Spaces:
fantos
/
Runtime error

RMBG2 / app.py
arxivgpt kim
Update app.py
725fefe verified
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from huggingface_hub import hf_hub_download
import gradio as gr
from gradio_imageslider import ImageSlider
from briarmbg import BriaRMBG
import PIL
from PIL import Image
from typing import Tuple
net=BriaRMBG()
# model_path = "./model1.pth"
model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net=net.cuda()
else:
net.load_state_dict(torch.load(model_path,map_location="cpu"))
net.eval()
def resize_image(image):
image = image.convert('RGB')
model_input_size = (1024, 1024)
image = image.resize(model_input_size, Image.BILINEAR)
return image
def process(image):
# ์ด๋ฏธ์ง€๊ฐ€ numpy ๋ฐฐ์—ด์ธ ๊ฒฝ์šฐ์—๋งŒ PIL.Image ๊ฐ์ฒด๋กœ ๋ณ€ํ™˜
if isinstance(image, np.ndarray):
orig_image = Image.fromarray(image)
else:
# ์ด๋ฏธ PIL.Image.Image ๊ฐ์ฒด์ธ ๊ฒฝ์šฐ, ๋ณ€ํ™˜ ์—†์ด ์‚ฌ์šฉ
orig_image = image
w, h = orig_im_size = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
im_tensor = torch.unsqueeze(im_tensor, 0)
im_tensor = torch.divide(im_tensor, 255.0)
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
if torch.cuda.is_available():
im_tensor = im_tensor.cuda()
# inference
result = net(im_tensor)
# post process
result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0)
ma = torch.max(result)
mi = torch.min(result)
result = (result - mi) / (ma - mi)
# image to pil
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
# paste the mask on the original image
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
new_im.paste(orig_image, mask=pil_im)
return new_im
def calculate_position(org_size, add_size, position):
if position == "์ƒ๋‹จ ์ขŒ์ธก":
return (0, 0)
elif position == "์ƒ๋‹จ ๊ฐ€์šด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, 0)
elif position == "์ƒ๋‹จ ์šฐ์ธก":
return (org_size[0] - add_size[0], 0)
elif position == "์ค‘์•™ ์ขŒ์ธก":
return (0, (org_size[1] - add_size[1]) // 2)
elif position == "์ค‘์•™ ๊ฐ€์šด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, (org_size[1] - add_size[1]) // 2)
elif position == "์ค‘์•™ ์šฐ์ธก":
return (org_size[0] - add_size[0], (org_size[1] - add_size[1]) // 2)
elif position == "ํ•˜๋‹จ ์ขŒ์ธก":
return (0, org_size[1] - add_size[1])
elif position == "ํ•˜๋‹จ ๊ฐ€์šด๋ฐ":
return ((org_size[0] - add_size[0]) // 2, org_size[1] - add_size[1])
elif position == "ํ•˜๋‹จ ์šฐ์ธก":
return (org_size[0] - add_size[0], org_size[1] - add_size[1])
def merge(org_image, add_image, scale, position, display_size):
# ์‚ฌ์šฉ์ž๊ฐ€ ์„ ํƒํ•œ ๋””์Šคํ”Œ๋ ˆ์ด ํฌ๊ธฐ์— ๋”ฐ๋ผ ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ํฌ๊ธฐ ์กฐ์ ˆ
display_width, display_height = map(int, display_size.split('x'))
# ์ด๋ฏธ์ง€ ๋ณ‘ํ•ฉ ๋กœ์ง
scale_percentage = scale / 100.0
new_size = (int(add_image.width * scale_percentage), int(add_image.height * scale_percentage))
add_image = add_image.resize(new_size, Image.Resampling.LANCZOS)
position = calculate_position(org_image.size, add_image.size, position)
merged_image = Image.new("RGBA", org_image.size)
merged_image.paste(org_image, (0, 0))
merged_image.paste(add_image, position, add_image)
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ๋””์Šคํ”Œ๋ ˆ์ด ํฌ๊ธฐ ์กฐ์ ˆ
final_image = merged_image.resize((display_width, display_height), Image.Resampling.LANCZOS)
return final_image
with gr.Blocks() as demo:
with gr.Tab("Background Removal"):
with gr.Column():
gr.Markdown("## BRIA RMBG 1.4")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This is a demo for BRIA RMBG 1.4 that using
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
</p>
''')
input_image = gr.Image(type="pil")
output_image = gr.Image()
process_button = gr.Button("Remove Background")
process_button.click(fn=process, inputs=input_image, outputs=output_image)
with gr.Tab("Merge"):
with gr.Column():
org_image = gr.Image(label="Background", type='pil', image_mode='RGBA', height=400) # ์˜ˆ์‹œ๋กœ ๋†’์ด ์กฐ์ ˆ
add_image = gr.Image(label="Foreground", type='pil', image_mode='RGBA', height=400) # ์˜ˆ์‹œ๋กœ ๋†’์ด ์กฐ์ ˆ
scale = gr.Slider(minimum=10, maximum=200, step=1, value=100, label="Scale of Foreground Image (%)")
position = gr.Radio(choices=["์ค‘์•™ ๊ฐ€์šด๋ฐ", "์ƒ๋‹จ ์ขŒ์ธก", "์ƒ๋‹จ ๊ฐ€์šด๋ฐ", "์ƒ๋‹จ ์šฐ์ธก", "์ค‘์•™ ์ขŒ์ธก", "์ค‘์•™ ์šฐ์ธก", "ํ•˜๋‹จ ์ขŒ์ธก", "ํ•˜๋‹จ ๊ฐ€์šด๋ฐ", "ํ•˜๋‹จ ์šฐ์ธก"], value="์ค‘์•™ ๊ฐ€์šด๋ฐ", label="Position of Foreground Image")
display_size = gr.Textbox(value="1024x768", label="Display Size (Width x Height)")
btn_merge = gr.Button("Merge Images")
result_merge = gr.Image()
btn_merge.click(
fn=merge,
inputs=[org_image, add_image, scale, position, display_size],
outputs=result_merge,
)
demo.launch()