import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize from huggingface_hub import hf_hub_download import gradio as gr from gradio_imageslider import ImageSlider from briarmbg import BriaRMBG import PIL from PIL import Image from typing import Tuple net=BriaRMBG() # model_path = "./model1.pth" model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth') if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net=net.cuda() else: net.load_state_dict(torch.load(model_path,map_location="cpu")) net.eval() def resize_image(image): image = image.convert('RGB') model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def process(image): # 이미지가 numpy 배열인 경우에만 PIL.Image 객체로 변환 if isinstance(image, np.ndarray): orig_image = Image.fromarray(image) else: # 이미 PIL.Image.Image 객체인 경우, 변환 없이 사용 orig_image = image w, h = orig_im_size = orig_image.size image = resize_image(orig_image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) if torch.cuda.is_available(): im_tensor = im_tensor.cuda() # inference result = net(im_tensor) # post process result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) # image to pil im_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_im = Image.fromarray(np.squeeze(im_array)) # paste the mask on the original image new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) new_im.paste(orig_image, mask=pil_im) return new_im def calculate_position(org_size, add_size, position): if position == "상단 좌측": return (0, 0) elif position == "상단 가운데": return ((org_size[0] - add_size[0]) // 2, 0) elif position == "상단 우측": return (org_size[0] - add_size[0], 0) elif position == "중앙 좌측": return (0, (org_size[1] - add_size[1]) // 2) elif position == "중앙 가운데": return ((org_size[0] - add_size[0]) // 2, (org_size[1] - add_size[1]) // 2) elif position == "중앙 우측": return (org_size[0] - add_size[0], (org_size[1] - add_size[1]) // 2) elif position == "하단 좌측": return (0, org_size[1] - add_size[1]) elif position == "하단 가운데": return ((org_size[0] - add_size[0]) // 2, org_size[1] - add_size[1]) elif position == "하단 우측": return (org_size[0] - add_size[0], org_size[1] - add_size[1]) def merge(org_image, add_image, scale, position, display_size): # 사용자가 선택한 디스플레이 크기에 따라 결과 이미지 크기 조절 display_width, display_height = map(int, display_size.split('x')) # 이미지 병합 로직 scale_percentage = scale / 100.0 new_size = (int(add_image.width * scale_percentage), int(add_image.height * scale_percentage)) add_image = add_image.resize(new_size, Image.Resampling.LANCZOS) position = calculate_position(org_image.size, add_image.size, position) merged_image = Image.new("RGBA", org_image.size) merged_image.paste(org_image, (0, 0)) merged_image.paste(add_image, position, add_image) # 결과 이미지 디스플레이 크기 조절 final_image = merged_image.resize((display_width, display_height), Image.Resampling.LANCZOS) return final_image with gr.Blocks() as demo: with gr.Tab("Background Removal"): with gr.Column(): gr.Markdown("## BRIA RMBG 1.4") gr.HTML('''

This is a demo for BRIA RMBG 1.4 that using BRIA RMBG-1.4 image matting model as backbone.

''') input_image = gr.Image(type="pil") output_image = gr.Image() process_button = gr.Button("Remove Background") process_button.click(fn=process, inputs=input_image, outputs=output_image) with gr.Tab("Merge"): with gr.Column(): org_image = gr.Image(label="Background", type='pil', image_mode='RGBA', height=400) # 예시로 높이 조절 add_image = gr.Image(label="Foreground", type='pil', image_mode='RGBA', height=400) # 예시로 높이 조절 scale = gr.Slider(minimum=10, maximum=200, step=1, value=100, label="Scale of Foreground Image (%)") position = gr.Radio(choices=["중앙 가운데", "상단 좌측", "상단 가운데", "상단 우측", "중앙 좌측", "중앙 우측", "하단 좌측", "하단 가운데", "하단 우측"], value="중앙 가운데", label="Position of Foreground Image") display_size = gr.Textbox(value="1024x768", label="Display Size (Width x Height)") btn_merge = gr.Button("Merge Images") result_merge = gr.Image() btn_merge.click( fn=merge, inputs=[org_image, add_image, scale, position, display_size], outputs=result_merge, ) demo.launch()