|
import numpy as np |
|
import random |
|
import torch |
|
from pathlib import Path |
|
from torch.utils import data as data |
|
|
|
from basicsr.data.transforms import augment, paired_random_crop |
|
from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor |
|
from basicsr.utils.flow_util import dequantize_flow |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class REDSDataset(data.Dataset): |
|
"""REDS dataset for training. |
|
|
|
The keys are generated from a meta info txt file. |
|
basicsr/data/meta_info/meta_info_REDS_GT.txt |
|
|
|
Each line contains: |
|
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by |
|
a white space. |
|
Examples: |
|
000 100 (720,1280,3) |
|
001 100 (720,1280,3) |
|
... |
|
|
|
Key examples: "000/00000000" |
|
GT (gt): Ground-Truth; |
|
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. |
|
|
|
Args: |
|
opt (dict): Config for train dataset. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
dataroot_lq (str): Data root path for lq. |
|
dataroot_flow (str, optional): Data root path for flow. |
|
meta_info_file (str): Path for meta information file. |
|
val_partition (str): Validation partition types. 'REDS4' or 'official'. |
|
io_backend (dict): IO backend type and other kwarg. |
|
num_frame (int): Window size for input frames. |
|
gt_size (int): Cropped patched size for gt patches. |
|
interval_list (list): Interval list for temporal augmentation. |
|
random_reverse (bool): Random reverse input frames. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). |
|
scale (bool): Scale, which will be added automatically. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(REDSDataset, self).__init__() |
|
self.opt = opt |
|
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) |
|
self.flow_root = Path(opt['dataroot_flow']) if opt['dataroot_flow'] is not None else None |
|
assert opt['num_frame'] % 2 == 1, (f'num_frame should be odd number, but got {opt["num_frame"]}') |
|
self.num_frame = opt['num_frame'] |
|
self.num_half_frames = opt['num_frame'] // 2 |
|
|
|
self.keys = [] |
|
with open(opt['meta_info_file'], 'r') as fin: |
|
for line in fin: |
|
folder, frame_num, _ = line.split(' ') |
|
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))]) |
|
|
|
|
|
if opt['val_partition'] == 'REDS4': |
|
val_partition = ['000', '011', '015', '020'] |
|
elif opt['val_partition'] == 'official': |
|
val_partition = [f'{v:03d}' for v in range(240, 270)] |
|
else: |
|
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.' |
|
f"Supported ones are ['official', 'REDS4'].") |
|
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition] |
|
|
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.is_lmdb = False |
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.is_lmdb = True |
|
if self.flow_root is not None: |
|
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow'] |
|
else: |
|
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt'] |
|
|
|
|
|
self.interval_list = opt['interval_list'] |
|
self.random_reverse = opt['random_reverse'] |
|
interval_str = ','.join(str(x) for x in opt['interval_list']) |
|
logger = get_root_logger() |
|
logger.info(f'Temporal augmentation interval list: [{interval_str}]; ' |
|
f'random reverse is {self.random_reverse}.') |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
scale = self.opt['scale'] |
|
gt_size = self.opt['gt_size'] |
|
key = self.keys[index] |
|
clip_name, frame_name = key.split('/') |
|
center_frame_idx = int(frame_name) |
|
|
|
|
|
interval = random.choice(self.interval_list) |
|
|
|
|
|
start_frame_idx = center_frame_idx - self.num_half_frames * interval |
|
end_frame_idx = center_frame_idx + self.num_half_frames * interval |
|
|
|
while (start_frame_idx < 0) or (end_frame_idx > 99): |
|
center_frame_idx = random.randint(0, 99) |
|
start_frame_idx = (center_frame_idx - self.num_half_frames * interval) |
|
end_frame_idx = center_frame_idx + self.num_half_frames * interval |
|
frame_name = f'{center_frame_idx:08d}' |
|
neighbor_list = list(range(start_frame_idx, end_frame_idx + 1, interval)) |
|
|
|
if self.random_reverse and random.random() < 0.5: |
|
neighbor_list.reverse() |
|
|
|
assert len(neighbor_list) == self.num_frame, (f'Wrong length of neighbor list: {len(neighbor_list)}') |
|
|
|
|
|
if self.is_lmdb: |
|
img_gt_path = f'{clip_name}/{frame_name}' |
|
else: |
|
img_gt_path = self.gt_root / clip_name / f'{frame_name}.png' |
|
img_bytes = self.file_client.get(img_gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
img_lqs = [] |
|
for neighbor in neighbor_list: |
|
if self.is_lmdb: |
|
img_lq_path = f'{clip_name}/{neighbor:08d}' |
|
else: |
|
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png' |
|
img_bytes = self.file_client.get(img_lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
img_lqs.append(img_lq) |
|
|
|
|
|
if self.flow_root is not None: |
|
img_flows = [] |
|
|
|
for i in range(self.num_half_frames, 0, -1): |
|
if self.is_lmdb: |
|
flow_path = f'{clip_name}/{frame_name}_p{i}' |
|
else: |
|
flow_path = (self.flow_root / clip_name / f'{frame_name}_p{i}.png') |
|
img_bytes = self.file_client.get(flow_path, 'flow') |
|
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) |
|
dx, dy = np.split(cat_flow, 2, axis=0) |
|
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) |
|
img_flows.append(flow) |
|
|
|
for i in range(1, self.num_half_frames + 1): |
|
if self.is_lmdb: |
|
flow_path = f'{clip_name}/{frame_name}_n{i}' |
|
else: |
|
flow_path = (self.flow_root / clip_name / f'{frame_name}_n{i}.png') |
|
img_bytes = self.file_client.get(flow_path, 'flow') |
|
cat_flow = imfrombytes(img_bytes, flag='grayscale', float32=False) |
|
dx, dy = np.split(cat_flow, 2, axis=0) |
|
flow = dequantize_flow(dx, dy, max_val=20, denorm=False) |
|
img_flows.append(flow) |
|
|
|
|
|
|
|
img_lqs.extend(img_flows) |
|
|
|
|
|
img_gt, img_lqs = paired_random_crop(img_gt, img_lqs, gt_size, scale, img_gt_path) |
|
if self.flow_root is not None: |
|
img_lqs, img_flows = img_lqs[:self.num_frame], img_lqs[self.num_frame:] |
|
|
|
|
|
img_lqs.append(img_gt) |
|
if self.flow_root is not None: |
|
img_results, img_flows = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot'], img_flows) |
|
else: |
|
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) |
|
|
|
img_results = img2tensor(img_results) |
|
img_lqs = torch.stack(img_results[0:-1], dim=0) |
|
img_gt = img_results[-1] |
|
|
|
if self.flow_root is not None: |
|
img_flows = img2tensor(img_flows) |
|
|
|
img_flows.insert(self.num_half_frames, torch.zeros_like(img_flows[0])) |
|
img_flows = torch.stack(img_flows, dim=0) |
|
|
|
|
|
|
|
|
|
|
|
if self.flow_root is not None: |
|
return {'lq': img_lqs, 'flow': img_flows, 'gt': img_gt, 'key': key} |
|
else: |
|
return {'lq': img_lqs, 'gt': img_gt, 'key': key} |
|
|
|
def __len__(self): |
|
return len(self.keys) |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class REDSRecurrentDataset(data.Dataset): |
|
"""REDS dataset for training recurrent networks. |
|
|
|
The keys are generated from a meta info txt file. |
|
basicsr/data/meta_info/meta_info_REDS_GT.txt |
|
|
|
Each line contains: |
|
1. subfolder (clip) name; 2. frame number; 3. image shape, separated by |
|
a white space. |
|
Examples: |
|
000 100 (720,1280,3) |
|
001 100 (720,1280,3) |
|
... |
|
|
|
Key examples: "000/00000000" |
|
GT (gt): Ground-Truth; |
|
LQ (lq): Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames. |
|
|
|
Args: |
|
opt (dict): Config for train dataset. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
dataroot_lq (str): Data root path for lq. |
|
dataroot_flow (str, optional): Data root path for flow. |
|
meta_info_file (str): Path for meta information file. |
|
val_partition (str): Validation partition types. 'REDS4' or 'official'. |
|
io_backend (dict): IO backend type and other kwarg. |
|
num_frame (int): Window size for input frames. |
|
gt_size (int): Cropped patched size for gt patches. |
|
interval_list (list): Interval list for temporal augmentation. |
|
random_reverse (bool): Random reverse input frames. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h and w for implementation). |
|
scale (bool): Scale, which will be added automatically. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(REDSRecurrentDataset, self).__init__() |
|
self.opt = opt |
|
self.gt_root, self.lq_root = Path(opt['dataroot_gt']), Path(opt['dataroot_lq']) |
|
self.num_frame = opt['num_frame'] |
|
|
|
self.keys = [] |
|
with open(opt['meta_info_file'], 'r') as fin: |
|
for line in fin: |
|
folder, frame_num, _ = line.split(' ') |
|
self.keys.extend([f'{folder}/{i:08d}' for i in range(int(frame_num))]) |
|
|
|
|
|
if opt['val_partition'] == 'REDS4': |
|
val_partition = ['000', '011', '015', '020'] |
|
elif opt['val_partition'] == 'official': |
|
val_partition = [f'{v:03d}' for v in range(240, 270)] |
|
else: |
|
raise ValueError(f'Wrong validation partition {opt["val_partition"]}.' |
|
f"Supported ones are ['official', 'REDS4'].") |
|
if opt['test_mode']: |
|
self.keys = [v for v in self.keys if v.split('/')[0] in val_partition] |
|
else: |
|
self.keys = [v for v in self.keys if v.split('/')[0] not in val_partition] |
|
|
|
|
|
self.file_client = None |
|
self.io_backend_opt = opt['io_backend'] |
|
self.is_lmdb = False |
|
if self.io_backend_opt['type'] == 'lmdb': |
|
self.is_lmdb = True |
|
if hasattr(self, 'flow_root') and self.flow_root is not None: |
|
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root, self.flow_root] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt', 'flow'] |
|
else: |
|
self.io_backend_opt['db_paths'] = [self.lq_root, self.gt_root] |
|
self.io_backend_opt['client_keys'] = ['lq', 'gt'] |
|
|
|
|
|
self.interval_list = opt.get('interval_list', [1]) |
|
self.random_reverse = opt.get('random_reverse', False) |
|
interval_str = ','.join(str(x) for x in self.interval_list) |
|
logger = get_root_logger() |
|
logger.info(f'Temporal augmentation interval list: [{interval_str}]; ' |
|
f'random reverse is {self.random_reverse}.') |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) |
|
|
|
scale = self.opt['scale'] |
|
gt_size = self.opt['gt_size'] |
|
key = self.keys[index] |
|
clip_name, frame_name = key.split('/') |
|
|
|
|
|
interval = random.choice(self.interval_list) |
|
|
|
|
|
start_frame_idx = int(frame_name) |
|
if start_frame_idx > 100 - self.num_frame * interval: |
|
start_frame_idx = random.randint(0, 100 - self.num_frame * interval) |
|
end_frame_idx = start_frame_idx + self.num_frame * interval |
|
|
|
neighbor_list = list(range(start_frame_idx, end_frame_idx, interval)) |
|
|
|
|
|
if self.random_reverse and random.random() < 0.5: |
|
neighbor_list.reverse() |
|
|
|
|
|
img_lqs = [] |
|
img_gts = [] |
|
for neighbor in neighbor_list: |
|
if self.is_lmdb: |
|
img_lq_path = f'{clip_name}/{neighbor:08d}' |
|
img_gt_path = f'{clip_name}/{neighbor:08d}' |
|
else: |
|
img_lq_path = self.lq_root / clip_name / f'{neighbor:08d}.png' |
|
img_gt_path = self.gt_root / clip_name / f'{neighbor:08d}.png' |
|
|
|
|
|
img_bytes = self.file_client.get(img_lq_path, 'lq') |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
img_lqs.append(img_lq) |
|
|
|
|
|
img_bytes = self.file_client.get(img_gt_path, 'gt') |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
img_gts.append(img_gt) |
|
|
|
|
|
img_gts, img_lqs = paired_random_crop(img_gts, img_lqs, gt_size, scale, img_gt_path) |
|
|
|
|
|
img_lqs.extend(img_gts) |
|
img_results = augment(img_lqs, self.opt['use_hflip'], self.opt['use_rot']) |
|
|
|
img_results = img2tensor(img_results) |
|
img_gts = torch.stack(img_results[len(img_lqs) // 2:], dim=0) |
|
img_lqs = torch.stack(img_results[:len(img_lqs) // 2], dim=0) |
|
|
|
|
|
|
|
|
|
return {'lq': img_lqs, 'gt': img_gts, 'key': key} |
|
|
|
def __len__(self): |
|
return len(self.keys) |
|
|