File size: 9,572 Bytes
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb667fe
e6062ad
 
fb667fe
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217e57c
 
 
 
e6062ad
 
 
 
 
 
 
 
7c9a70d
 
 
 
e6062ad
 
7c9a70d
7262f40
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e024d5
 
 
 
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eadfab2
217e57c
 
e6062ad
 
 
 
 
 
 
 
 
 
dce2263
 
 
 
e6062ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import tempfile
import time
from collections.abc import Sequence
from typing import Any, cast

import gradio as gr
import numpy as np
import pillow_heif
import spaces
import torch
from gradio_image_annotation import image_annotator
from gradio_imageslider import ImageSlider
from PIL import Image
from pymatting.foreground.estimate_foreground_ml import estimate_foreground_ml
from refiners.fluxion.utils import no_grad
from refiners.solutions import BoxSegmenter
from transformers import GroundingDinoForObjectDetection, GroundingDinoProcessor

BoundingBox = tuple[int, int, int, int]

pillow_heif.register_heif_opener()
pillow_heif.register_avif_opener()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# weird dance because ZeroGPU
segmenter = BoxSegmenter(device="cpu")
segmenter.device = device
segmenter.model = segmenter.model.to(device=segmenter.device)

gd_model_path = "IDEA-Research/grounding-dino-base"
gd_processor = GroundingDinoProcessor.from_pretrained(gd_model_path)
gd_model = GroundingDinoForObjectDetection.from_pretrained(gd_model_path, torch_dtype=torch.float32)
gd_model = gd_model.to(device=device)  # type: ignore
assert isinstance(gd_model, GroundingDinoForObjectDetection)


def bbox_union(bboxes: Sequence[list[int]]) -> BoundingBox | None:
    if not bboxes:
        return None
    for bbox in bboxes:
        assert len(bbox) == 4
        assert all(isinstance(x, int) for x in bbox)
    return (
        min(bbox[0] for bbox in bboxes),
        min(bbox[1] for bbox in bboxes),
        max(bbox[2] for bbox in bboxes),
        max(bbox[3] for bbox in bboxes),
    )


def corners_to_pixels_format(bboxes: torch.Tensor, width: int, height: int) -> torch.Tensor:
    x1, y1, x2, y2 = bboxes.round().to(torch.int32).unbind(-1)
    return torch.stack((x1.clamp_(0, width), y1.clamp_(0, height), x2.clamp_(0, width), y2.clamp_(0, height)), dim=-1)


def gd_detect(img: Image.Image, prompt: str) -> BoundingBox | None:
    assert isinstance(gd_processor, GroundingDinoProcessor)

    # Grounding Dino expects a dot after each category.
    inputs = gd_processor(images=img, text=f"{prompt}.", return_tensors="pt").to(device=device)

    with no_grad():
        outputs = gd_model(**inputs)
    width, height = img.size
    results: dict[str, Any] = gd_processor.post_process_grounded_object_detection(
        outputs,
        inputs["input_ids"],
        target_sizes=[(height, width)],
    )[0]
    assert "boxes" in results and isinstance(results["boxes"], torch.Tensor)

    bboxes = corners_to_pixels_format(results["boxes"].cpu(), width, height)
    return bbox_union(bboxes.numpy().tolist())


def apply_mask(
    img: Image.Image,
    mask_img: Image.Image,
    defringe: bool = True,
) -> Image.Image:
    assert img.size == mask_img.size
    img = img.convert("RGB")
    mask_img = mask_img.convert("L")

    if defringe:
        # Mitigate edge halo effects via color decontamination
        rgb, alpha = np.asarray(img) / 255.0, np.asarray(mask_img) / 255.0
        foreground = cast(np.ndarray[Any, np.dtype[np.uint8]], estimate_foreground_ml(rgb, alpha))
        img = Image.fromarray((foreground * 255).astype("uint8"))

    result = Image.new("RGBA", img.size)
    result.paste(img, (0, 0), mask_img)
    return result


@spaces.GPU
def _gpu_process(
    img: Image.Image,
    prompt: str | BoundingBox | None,
) -> tuple[Image.Image, BoundingBox | None, list[str]]:
    # Because of ZeroGPU shenanigans, we need a *single* function with the
    # `spaces.GPU` decorator that *does not* contain postprocessing.

    time_log: list[str] = []

    if isinstance(prompt, str):
        t0 = time.time()
        bbox = gd_detect(img, prompt)
        time_log.append(f"detect: {time.time() - t0}")
        if not bbox:
            print(time_log[0])
            raise gr.Error("No object detected")
    else:
        bbox = prompt

    t0 = time.time()
    mask = segmenter(img, bbox)
    time_log.append(f"segment: {time.time() - t0}")

    return mask, bbox, time_log


def _process(
    img: Image.Image,
    prompt: str | BoundingBox | None,
) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
    # enforce max dimensions for pymatting performance reasons
    if img.width > 2048 or img.height > 2048:
        orig_res = max(img.width, img.height)
        img.thumbnail((2048, 2048))
        if isinstance(prompt, tuple):
            x0, y0, x1, y1 = (int(x * 2048 / orig_res) for x in prompt)
            prompt = (x0, y0, x1, y1)

    mask, bbox, time_log = _gpu_process(img, prompt)

    t0 = time.time()
    masked_alpha = apply_mask(img, mask, defringe=True)
    time_log.append(f"crop: {time.time() - t0}")
    print(", ".join(time_log))

    masked_rgb = Image.alpha_composite(Image.new("RGBA", masked_alpha.size, "white"), masked_alpha)

    thresholded = mask.point(lambda p: 255 if p > 10 else 0)
    bbox = thresholded.getbbox()
    to_dl = masked_alpha.crop(bbox)

    temp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
    to_dl.save(temp, format="PNG")
    temp.close()

    return (img, masked_rgb), gr.DownloadButton(value=temp.name, interactive=True)


def process_bbox(prompts: dict[str, Any]) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
    assert isinstance(img := prompts["image"], Image.Image)
    assert isinstance(boxes := prompts["boxes"], list)
    if len(boxes) == 1:
        assert isinstance(box := boxes[0], dict)
        bbox = tuple(box[k] for k in ["xmin", "ymin", "xmax", "ymax"])
    else:
        assert len(boxes) == 0
        bbox = None
    return _process(img, bbox)


def on_change_bbox(prompts: dict[str, Any] | None):
    return gr.update(interactive=prompts is not None)


def process_prompt(img: Image.Image, prompt: str) -> tuple[tuple[Image.Image, Image.Image], gr.DownloadButton]:
    return _process(img, prompt)


def on_change_prompt(img: Image.Image | None, prompt: str | None):
    return gr.update(interactive=bool(img and prompt))


css = """
footer {
    visibility: hidden;
}
"""


with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:

    with gr.Tab("By prompt", id="tab_prompt"):
        with gr.Row():
            with gr.Column():
                iimg = gr.Image(type="pil", label="Input")
                prompt = gr.Textbox(label="What should we cut?")
                btn = gr.ClearButton(value="Cut Out Object", interactive=False)
            with gr.Column():
                oimg = ImageSlider(label="Before / After", show_download_button=False, interactive=False)
                dlbt = gr.DownloadButton("Download Cutout", interactive=False)

        btn.add(oimg)

        for inp in [iimg, prompt]:
            inp.change(
                fn=on_change_prompt,
                inputs=[iimg, prompt],
                outputs=[btn],
            )
        btn.click(
            fn=process_prompt,
            inputs=[iimg, prompt],
            outputs=[oimg, dlbt],
            api_name=False,
        )

        examples = [
            [
                "examples/text.jpg",
                "text",
            ],            
            [
                "examples/potted-plant.jpg",
                "potted plant",
            ],
            [
                "examples/chair.jpg",
                "chair",
            ],
            [
                "examples/black-lamp.jpg",
                "black lamp",
            ],
        ]

        ex = gr.Examples(
            examples=examples,
            inputs=[iimg, prompt],
            outputs=[oimg, dlbt],
            fn=process_prompt,
            cache_examples=True,
        )

    with gr.Tab("By bounding box", id="tab_bb"):
        with gr.Row():
            with gr.Column():
                annotator = image_annotator(
                    image_type="pil",
                    disable_edit_boxes=True,
                    show_download_button=False,
                    show_share_button=False,
                    single_box=True,
                    label="Input",
                )
                btn = gr.ClearButton(value="Cut Out Object", interactive=False)
            with gr.Column():
                oimg = ImageSlider(label="Before / After", show_download_button=False)
                dlbt = gr.DownloadButton("Download Cutout", interactive=False)

        btn.add(oimg)

        annotator.change(
            fn=on_change_bbox,
            inputs=[annotator],
            outputs=[btn],
        )
        btn.click(
            fn=process_bbox,
            inputs=[annotator],
            outputs=[oimg, dlbt],
            api_name=False,
        )

        examples = [
            {
                "image": "examples/text.jpg",
                "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
            },            
            {
                "image": "examples/potted-plant.jpg",
                "boxes": [{"xmin": 51, "ymin": 511, "xmax": 639, "ymax": 1255}],
            },
            {
                "image": "examples/chair.jpg",
                "boxes": [{"xmin": 98, "ymin": 330, "xmax": 973, "ymax": 1468}],
            },
            {
                "image": "examples/black-lamp.jpg",
                "boxes": [{"xmin": 88, "ymin": 148, "xmax": 700, "ymax": 1414}],
            },
        ]

        ex = gr.Examples(
            examples=examples,
            inputs=[annotator],
            outputs=[oimg, dlbt],
            fn=process_bbox,
            cache_examples=True,
        )


demo.queue(max_size=30, api_open=False)
demo.launch(show_api=False)