import numpy as np import torch import torch.nn.functional as F from torchvision.transforms.functional import normalize from briarmbg import BriaRMBG from huggingface_hub import hf_hub_download import gradio as gr from PIL import Image def resize_image(image): image = image.convert('RGB') model_input_size = (1024, 1024) image = image.resize(model_input_size, Image.BILINEAR) return image def process(image): # 이미지가 numpy 배열인 경우에만 PIL.Image 객체로 변환 if isinstance(image, np.ndarray): orig_image = Image.fromarray(image) else: # 이미 PIL.Image.Image 객체인 경우, 변환 없이 사용 orig_image = image w, h = orig_im_size = orig_image.size image = resize_image(orig_image) im_np = np.array(image) im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1) im_tensor = torch.unsqueeze(im_tensor, 0) im_tensor = torch.divide(im_tensor, 255.0) im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0]) if torch.cuda.is_available(): im_tensor = im_tensor.cuda() # 모델 로딩 및 예측 net = BriaRMBG() model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth') if torch.cuda.is_available(): net.load_state_dict(torch.load(model_path)) net = net.cuda() else: net.load_state_dict(torch.load(model_path, map_location="cpu")) net.eval() result = net(im_tensor) # post process result = torch.squeeze(F.interpolate(result[0][0], size=(h, w), mode='bilinear'), 0) ma = torch.max(result) mi = torch.min(result) result = (result - mi) / (ma - mi) # image to pil im_array = (result * 255).cpu().data.numpy().astype(np.uint8) pil_im = Image.fromarray(np.squeeze(im_array)) # paste the mask on the original image new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0)) new_im.paste(orig_image, mask=pil_im) return new_im css = """ footer { visibility: hidden; } """ with gr.Blocks(css=css) as demo: with gr.Column(): input_image = gr.Image(type="pil") output_image = gr.Image() process_button = gr.Button("Remove Background Image") process_button.click(fn=process, inputs=input_image, outputs=output_image) demo.launch()