|
import spaces |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from diffusers import DiffusionPipeline |
|
import random |
|
from transformers import pipeline |
|
|
|
torch.backends.cudnn.deterministic = True |
|
torch.backends.cudnn.benchmark = False |
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
|
|
|
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") |
|
|
|
base_model = "black-forest-labs/FLUX.1-dev" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) |
|
|
|
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" |
|
trigger_word = "" |
|
pipe.load_lora_weights(lora_repo) |
|
|
|
pipe.to("cuda") |
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
@spaces.GPU() |
|
def translate_and_generate(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
|
|
def contains_korean(text): |
|
return any(ord('κ°') <= ord(char) <= ord('ν£') for char in text) |
|
|
|
if contains_korean(prompt): |
|
|
|
translated = translator(prompt)[0]['translation_text'] |
|
actual_prompt = translated |
|
else: |
|
actual_prompt = prompt |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
progress(0, "Starting image generation...") |
|
|
|
for i in range(1, steps + 1): |
|
if i % (steps // 10) == 0: |
|
progress(i / steps * 100, f"Processing step {i} of {steps}...") |
|
|
|
image = pipe( |
|
prompt=f"{actual_prompt} {trigger_word}", |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
).images[0] |
|
|
|
progress(100, "Completed!") |
|
return image, seed |
|
|
|
example_image_path = "example0.webp" |
|
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" |
|
example_cfg_scale = 3.2 |
|
example_steps = 32 |
|
example_width = 1152 |
|
example_height = 896 |
|
example_seed = 3981632454 |
|
example_lora_scale = 0.85 |
|
|
|
def load_example(): |
|
example_image = Image.open(example_image_path) |
|
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image |
|
|
|
css = """ |
|
.container {max-width: 1200px; margin: auto; padding: 20px;} |
|
.header {text-align: center; margin-bottom: 30px;} |
|
.generate-btn {background-color: #2ecc71 !important; color: white !important;} |
|
.generate-btn:hover {background-color: #27ae60 !important;} |
|
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;} |
|
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px;} |
|
""" |
|
|
|
with gr.Blocks(css=css) as app: |
|
with gr.Column(elem_classes="container"): |
|
gr.Markdown("# π¨ Flux ART Image Generator", elem_classes="header") |
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=3): |
|
with gr.Group(elem_classes="parameter-box"): |
|
prompt = gr.TextArea( |
|
label="βοΈ Your Prompt (νκΈ λλ μμ΄)", |
|
placeholder="μ΄λ―Έμ§λ₯Ό μ€λͺ
νμΈμ... (νκΈ μ
λ ₯μ μλμΌλ‘ μμ΄λ‘ λ²μλ©λλ€)", |
|
lines=5 |
|
) |
|
|
|
with gr.Group(elem_classes="parameter-box"): |
|
gr.Markdown("### ποΈ Generation Parameters") |
|
with gr.Row(): |
|
with gr.Column(): |
|
cfg_scale = gr.Slider( |
|
label="CFG Scale", |
|
minimum=1, |
|
maximum=20, |
|
step=0.5, |
|
value=example_cfg_scale |
|
) |
|
steps = gr.Slider( |
|
label="Steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=example_steps |
|
) |
|
lora_scale = gr.Slider( |
|
label="LoRA Scale", |
|
minimum=0, |
|
maximum=1, |
|
step=0.01, |
|
value=example_lora_scale |
|
) |
|
|
|
with gr.Group(elem_classes="parameter-box"): |
|
gr.Markdown("### π Image Dimensions") |
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=1536, |
|
step=64, |
|
value=example_width |
|
) |
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=1536, |
|
step=64, |
|
value=example_height |
|
) |
|
|
|
with gr.Group(elem_classes="parameter-box"): |
|
gr.Markdown("### π² Seed Settings") |
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox( |
|
True, |
|
label="Randomize seed" |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=example_seed |
|
) |
|
|
|
generate_button = gr.Button( |
|
"π Generate Image", |
|
elem_classes="generate-btn" |
|
) |
|
|
|
with gr.Column(scale=2): |
|
with gr.Group(elem_classes="result-box"): |
|
gr.Markdown("### πΌοΈ Generated Image") |
|
result = gr.Image(label="Result") |
|
|
|
app.load( |
|
load_example, |
|
inputs=[], |
|
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result] |
|
) |
|
|
|
generate_button.click( |
|
translate_and_generate, |
|
inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], |
|
outputs=[result, seed] |
|
) |
|
|
|
app.queue() |
|
app.launch() |