Update app.py
Browse files
app.py
CHANGED
@@ -9,12 +9,11 @@ torch.backends.cudnn.deterministic = True
|
|
9 |
torch.backends.cudnn.benchmark = False
|
10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
11 |
|
12 |
-
# Initialize the base model and specific LoRA
|
13 |
base_model = "black-forest-labs/FLUX.1-dev"
|
14 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
15 |
|
16 |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA"
|
17 |
-
trigger_word = ""
|
18 |
pipe.load_lora_weights(lora_repo)
|
19 |
|
20 |
pipe.to("cuda")
|
@@ -23,21 +22,16 @@ MAX_SEED = 2**32-1
|
|
23 |
|
24 |
@spaces.GPU()
|
25 |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
26 |
-
# Set random seed for reproducibility
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
30 |
|
31 |
-
# Update progress bar (0% saat mulai)
|
32 |
progress(0, "Starting image generation...")
|
33 |
|
34 |
-
# Generate image with progress updates
|
35 |
for i in range(1, steps + 1):
|
36 |
-
|
37 |
-
if i % (steps // 10) == 0: # Update every 10% of the steps
|
38 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
39 |
|
40 |
-
# Generate image using the pipeline
|
41 |
image = pipe(
|
42 |
prompt=f"{prompt} {trigger_word}",
|
43 |
num_inference_steps=steps,
|
@@ -48,13 +42,10 @@ def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora
|
|
48 |
joint_attention_kwargs={"scale": lora_scale},
|
49 |
).images[0]
|
50 |
|
51 |
-
# Final update (100%)
|
52 |
progress(100, "Completed!")
|
|
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
# Example cached image and settings
|
57 |
-
example_image_path = "example0.webp" # Replace with the actual path to the example image
|
58 |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene."""
|
59 |
example_cfg_scale = 3.2
|
60 |
example_steps = 32
|
@@ -64,28 +55,105 @@ example_seed = 3981632454
|
|
64 |
example_lora_scale = 0.85
|
65 |
|
66 |
def load_example():
|
67 |
-
# Load example image from file
|
68 |
example_image = Image.open(example_image_path)
|
69 |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
with gr.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
generate_button.click(
|
91 |
run_lora,
|
|
|
9 |
torch.backends.cudnn.benchmark = False
|
10 |
torch.backends.cuda.matmul.allow_tf32 = True
|
11 |
|
|
|
12 |
base_model = "black-forest-labs/FLUX.1-dev"
|
13 |
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
14 |
|
15 |
lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA"
|
16 |
+
trigger_word = ""
|
17 |
pipe.load_lora_weights(lora_repo)
|
18 |
|
19 |
pipe.to("cuda")
|
|
|
22 |
|
23 |
@spaces.GPU()
|
24 |
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
|
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
28 |
|
|
|
29 |
progress(0, "Starting image generation...")
|
30 |
|
|
|
31 |
for i in range(1, steps + 1):
|
32 |
+
if i % (steps // 10) == 0:
|
|
|
33 |
progress(i / steps * 100, f"Processing step {i} of {steps}...")
|
34 |
|
|
|
35 |
image = pipe(
|
36 |
prompt=f"{prompt} {trigger_word}",
|
37 |
num_inference_steps=steps,
|
|
|
42 |
joint_attention_kwargs={"scale": lora_scale},
|
43 |
).images[0]
|
44 |
|
|
|
45 |
progress(100, "Completed!")
|
46 |
+
return image, seed
|
47 |
|
48 |
+
example_image_path = "example0.webp"
|
|
|
|
|
|
|
49 |
example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene."""
|
50 |
example_cfg_scale = 3.2
|
51 |
example_steps = 32
|
|
|
55 |
example_lora_scale = 0.85
|
56 |
|
57 |
def load_example():
|
|
|
58 |
example_image = Image.open(example_image_path)
|
59 |
return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image
|
60 |
|
61 |
+
css = """
|
62 |
+
.container {max-width: 1200px; margin: auto; padding: 20px;}
|
63 |
+
.header {text-align: center; margin-bottom: 30px;}
|
64 |
+
.generate-btn {background-color: #2ecc71 !important; color: white !important;}
|
65 |
+
.generate-btn:hover {background-color: #27ae60 !important;}
|
66 |
+
.parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;}
|
67 |
+
.result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px;}
|
68 |
+
"""
|
69 |
+
|
70 |
+
with gr.Blocks(css=css) as app:
|
71 |
+
with gr.Column(elem_classes="container"):
|
72 |
+
gr.Markdown("# π¨ Flux ART Image Generator", elem_classes="header")
|
73 |
+
|
74 |
+
with gr.Row(equal_height=True):
|
75 |
+
with gr.Column(scale=3):
|
76 |
+
with gr.Group(elem_classes="parameter-box"):
|
77 |
+
prompt = gr.TextArea(
|
78 |
+
label="βοΈ Your Prompt",
|
79 |
+
placeholder="Describe the image you want to generate...",
|
80 |
+
lines=5
|
81 |
+
)
|
82 |
+
|
83 |
+
with gr.Group(elem_classes="parameter-box"):
|
84 |
+
gr.Markdown("### ποΈ Generation Parameters")
|
85 |
+
with gr.Row():
|
86 |
+
with gr.Column():
|
87 |
+
cfg_scale = gr.Slider(
|
88 |
+
label="CFG Scale",
|
89 |
+
minimum=1,
|
90 |
+
maximum=20,
|
91 |
+
step=0.5,
|
92 |
+
value=example_cfg_scale
|
93 |
+
)
|
94 |
+
steps = gr.Slider(
|
95 |
+
label="Steps",
|
96 |
+
minimum=1,
|
97 |
+
maximum=100,
|
98 |
+
step=1,
|
99 |
+
value=example_steps
|
100 |
+
)
|
101 |
+
lora_scale = gr.Slider(
|
102 |
+
label="LoRA Scale",
|
103 |
+
minimum=0,
|
104 |
+
maximum=1,
|
105 |
+
step=0.01,
|
106 |
+
value=example_lora_scale
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Group(elem_classes="parameter-box"):
|
110 |
+
gr.Markdown("### π Image Dimensions")
|
111 |
+
with gr.Row():
|
112 |
+
width = gr.Slider(
|
113 |
+
label="Width",
|
114 |
+
minimum=256,
|
115 |
+
maximum=1536,
|
116 |
+
step=64,
|
117 |
+
value=example_width
|
118 |
+
)
|
119 |
+
height = gr.Slider(
|
120 |
+
label="Height",
|
121 |
+
minimum=256,
|
122 |
+
maximum=1536,
|
123 |
+
step=64,
|
124 |
+
value=example_height
|
125 |
+
)
|
126 |
+
|
127 |
+
with gr.Group(elem_classes="parameter-box"):
|
128 |
+
gr.Markdown("### π² Seed Settings")
|
129 |
+
with gr.Row():
|
130 |
+
randomize_seed = gr.Checkbox(
|
131 |
+
True,
|
132 |
+
label="Randomize seed"
|
133 |
+
)
|
134 |
+
seed = gr.Slider(
|
135 |
+
label="Seed",
|
136 |
+
minimum=0,
|
137 |
+
maximum=MAX_SEED,
|
138 |
+
step=1,
|
139 |
+
value=example_seed
|
140 |
+
)
|
141 |
+
|
142 |
+
generate_button = gr.Button(
|
143 |
+
"π Generate Image",
|
144 |
+
elem_classes="generate-btn"
|
145 |
+
)
|
146 |
+
|
147 |
+
with gr.Column(scale=2):
|
148 |
+
with gr.Group(elem_classes="result-box"):
|
149 |
+
gr.Markdown("### πΌοΈ Generated Image")
|
150 |
+
result = gr.Image(label="Result")
|
151 |
+
|
152 |
+
app.load(
|
153 |
+
load_example,
|
154 |
+
inputs=[],
|
155 |
+
outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result]
|
156 |
+
)
|
157 |
|
158 |
generate_button.click(
|
159 |
run_lora,
|