import spaces import gradio as gr import torch from PIL import Image from diffusers import DiffusionPipeline import random torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False torch.backends.cuda.matmul.allow_tf32 = True base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "strangerzonehf/Flux-Pixel-Background-LoRA" trigger_word = "" pipe.load_lora_weights(lora_repo) pipe.to("cuda") MAX_SEED = 2**32-1 @spaces.GPU() def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device="cuda").manual_seed(seed) progress(0, "Starting image generation...") for i in range(1, steps + 1): if i % (steps // 10) == 0: progress(i / steps * 100, f"Processing step {i} of {steps}...") image = pipe( prompt=f"{prompt} {trigger_word}", num_inference_steps=steps, guidance_scale=cfg_scale, width=width, height=height, generator=generator, joint_attention_kwargs={"scale": lora_scale}, ).images[0] progress(100, "Completed!") return image, seed example_image_path = "example0.webp" example_prompt = """Pixel Background, a silhouette of a surfer is seen riding a wave on a red surfboard. The surfers shadow is cast on the left side of the image, adding a touch of depth to the composition. The background is a vibrant orange, pink, and blue, with a sun setting in the upper right corner of the frame. The silhouette of the surfer, a palm tree casts a shadow onto the wave, adding depth and contrast to the scene.""" example_cfg_scale = 3.2 example_steps = 32 example_width = 1152 example_height = 896 example_seed = 3981632454 example_lora_scale = 0.85 def load_example(): example_image = Image.open(example_image_path) return example_prompt, example_cfg_scale, example_steps, True, example_seed, example_width, example_height, example_lora_scale, example_image css = """ .container {max-width: 1200px; margin: auto; padding: 20px;} .header {text-align: center; margin-bottom: 30px;} .generate-btn {background-color: #2ecc71 !important; color: white !important;} .generate-btn:hover {background-color: #27ae60 !important;} .parameter-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px; margin: 10px 0;} .result-box {background-color: #f5f6fa; padding: 20px; border-radius: 10px;} """ with gr.Blocks(css=css) as app: with gr.Column(elem_classes="container"): gr.Markdown("# 🎨 Flux ART Image Generator", elem_classes="header") with gr.Row(equal_height=True): with gr.Column(scale=3): with gr.Group(elem_classes="parameter-box"): prompt = gr.TextArea( label="✍️ Your Prompt", placeholder="Describe the image you want to generate...", lines=5 ) with gr.Group(elem_classes="parameter-box"): gr.Markdown("### 🎛️ Generation Parameters") with gr.Row(): with gr.Column(): cfg_scale = gr.Slider( label="CFG Scale", minimum=1, maximum=20, step=0.5, value=example_cfg_scale ) steps = gr.Slider( label="Steps", minimum=1, maximum=100, step=1, value=example_steps ) lora_scale = gr.Slider( label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=example_lora_scale ) with gr.Group(elem_classes="parameter-box"): gr.Markdown("### 📐 Image Dimensions") with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=1536, step=64, value=example_width ) height = gr.Slider( label="Height", minimum=256, maximum=1536, step=64, value=example_height ) with gr.Group(elem_classes="parameter-box"): gr.Markdown("### 🎲 Seed Settings") with gr.Row(): randomize_seed = gr.Checkbox( True, label="Randomize seed" ) seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=example_seed ) generate_button = gr.Button( "🚀 Generate Image", elem_classes="generate-btn" ) with gr.Column(scale=2): with gr.Group(elem_classes="result-box"): gr.Markdown("### 🖼️ Generated Image") result = gr.Image(label="Result") app.load( load_example, inputs=[], outputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale, result] ) generate_button.click( run_lora, inputs=[prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale], outputs=[result, seed] ) app.queue() app.launch()