gecko / model /processing_gecko.py
farrosalferro24's picture
Initial commit
09773e9 verified
raw
history blame
26 kB
import math
from typing import List, Optional, Union, Dict
import torch
from PIL import Image
import logging
import os
import json
import re
from transformers.feature_extraction_sequence_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers import ProcessorMixin, ImageProcessingMixin, AutoImageProcessor, AutoTokenizer, AutoProcessor
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType
from transformers.processing_utils import transformers_module
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode
from transformers.utils import IMAGE_PROCESSOR_NAME
logger = logging.getLogger(__name__)
class GeckoProcessor(ProcessorMixin):
attributes = ["image_processor", "tokenizer"]
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor")
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast")
def __init__(self, image_processor=None, tokenizer=None, use_keyword=False, crop_size=336, cropping_method='dynamic', **kwargs):
super().__init__(image_processor, tokenizer)
self.crop_size = crop_size if crop_size is not None else int(image_processor.size['height'])
self.use_keyword = use_keyword
self.image_token_index = None
self.cropping_method = cropping_method
self.load_clip_tokenizer()
def load_clip_tokenizer(self):
if 'clip' in self.image_processor.image_processor_type.lower():
self.clip_tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-large-patch14-336')
elif 'siglip' in self.image_processor.image_processor_type.lower():
self.clip_tokenizer = AutoTokenizer.from_pretrained("google/siglip-so400m-patch14-384")
else:
raise ValueError(f"Invalid image processor type: {self.image_processor.image_processor_type}")
def process_images(self, images: List[Image.Image]):
# create documentation
"""
Parameters:
images: List[Image.Image]
List of PIL images to be processed
Returns:
Dict[str, torch.Tensor]:
pixel_values: List[torch.Tensor]
Pixel values of the images. Has shape (num_images, num_patches, num_channels, height, width)
coords: List[List[List[int]]]
Coordinates of the cropped images. Has shape (num_images, num_patches, 2)
"""
pixel_values = []
coords = []
for image in images:
outputs, coord = self.dynamic_preprocess(image)
pixel_values.append(outputs)
coords.append(coord)
return {"pixel_values": pixel_values, "coords": coords}
def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(self, image):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
if self.cropping_method == 'dynamic':
max_num = math.ceil(orig_width / self.crop_size) * math.ceil(orig_height / self.crop_size)
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(1, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= 1)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = self.find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, self.crop_size)
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
# target_aspect_ratio = (int(1.5 * target_aspect_ratio[0]), int(1.5 * target_aspect_ratio[1]))
elif self.cropping_method == 'naive':
target_aspect_ratio = (orig_width // self.crop_size, orig_height // self.crop_size)
# print(target_aspect_ratio)
# if target_aspect_ratio[0] * target_aspect_ratio[1] <= 25:
# target_aspect_ratio = (2 * orig_width // self.crop_size, 2 * orig_height // self.crop_size)
# print(target_aspect_ratio)
else:
raise ValueError(f"Invalid cropping method: {self.cropping_method}")
# calculate the target width and height
target_width = self.crop_size * target_aspect_ratio[0]
target_height = self.crop_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# add whole image
processed_images = []
processed_images.append(image.resize((self.crop_size, self.crop_size)))
coords = []
if blocks == 1:
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords
# resize the image
resized_img = image.resize((target_width, target_height))
for i in range(blocks):
x0 = (i % (target_width // self.crop_size))
y0 = (i // (target_width // self.crop_size))
x1 = ((i % (target_width // self.crop_size)) + 1)
y1 = ((i // (target_width // self.crop_size)) + 1)
box = (
x0 * self.crop_size,
y0 * self.crop_size,
x1 * self.crop_size,
y1 * self.crop_size
)
split_img = resized_img.crop(box)
processed_images.append(split_img)
coords.append([x0, y0])
# box = (
# (i % (target_width // self.crop_size)) * self.crop_size,
# (i // (target_width // self.crop_size)) * self.crop_size,
# ((i % (target_width // self.crop_size)) + 1) * self.crop_size,
# ((i // (target_width // self.crop_size)) + 1) * self.crop_size
# )
# split the image
assert len(processed_images) == blocks + 1
return self.image_processor(images=processed_images, return_tensors='pt')['pixel_values'], coords
def preprocess_interleaved_images_and_text(
self,
text,
images=None,
):
"""
Args:
text (`str`, `List[str]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
text can contain <image> tokens as the placeholder for the image(s) to be inserted.
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
the number of the images should match the number of <image> tokens in the text.
"""
assert text is not None, "text cannot be None."
if images is not None:
if isinstance(images, Image.Image):
images = [images]
if isinstance(images, list) and isinstance(images[0], Image.Image):
if isinstance(text, str):
images = [images]
elif isinstance(text, list):
if len(text) != len(images):
raise ValueError("Invalid input text. Number of texts does not match number of images.")
images = [[image] for image in images]
if isinstance(text, str):
num_images = len(images[0])
num_image_tokens = text.count("<image>")
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in text:
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in text:
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in text:
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
text = "<image>" * (num_images - num_image_tokens) + text
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
text = text.split("<image>")
for i, t in enumerate(text):
if i < num_images:
text[i] = t + "<image>"
text = "".join(text)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
for i, t in enumerate(text):
num_image_tokens = t.count("<image>")
num_images = len(images[i])
if num_image_tokens < num_images:
# prepend empty image tokens to text
if "USER:" in t:
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1)
elif "Human:" in t:
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1)
elif "HUMAN:" in t:
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1)
else:
t = "<image>" * (num_images - num_image_tokens) + t
# logger.warning("Image Tokens <image> are not provided in the text. Automatically prepending them before the text. This might cause model to behave unexpectedly.")
elif num_image_tokens > num_images:
t = t.split("<image>")
for j, s in enumerate(t):
if j < num_images:
t[j] = s + "<image>"
t = "".join(t)
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.")
# raise ValueError("Invalid input text. Number of <image> tokens exceeds number of images.")
text[i] = t
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images."
# add image denotation in text before each <image> as "(image {i}: <image>)"
for i, t in enumerate(texts):
for j in range(len(images[i])):
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1)
t = t.replace("<IMAGE>", "<image>")
texts[i] = t
else:
if isinstance(text, str):
texts = [text]
elif isinstance(text, list):
if not isinstance(text[0], str):
raise ValueError("Invalid input text. Each element of text must be a string.")
texts = text
else:
raise ValueError("Invalid input text. text must be a string or a list of strings.")
return texts, images
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
keywords_text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
images: ImageInput = None,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length=None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
add_image_ids: bool = True,
cropping_method: str = None,
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
number of channels, H and W are image height and width.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding
index) among:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
max_length (`int`, *optional*):
Maximum length of the returned list and optionally padding length (see above).
truncation (`bool`, *optional*):
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors of a particular framework. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return NumPy `np.ndarray` objects.
- `'jax'`: Return JAX `jnp.ndarray` objects.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. Have shape of (num_images, num_patches, num_tokens, embed_dim)
- **coords** -- Coordinates of the cropped images. Returned when `images` is not `None`. Have shape of (num_images, num_patches, 2)
"""
if cropping_method is not None:
self.cropping_method = cropping_method
if not self.image_token_index:
self.image_token_index = self.tokenizer.convert_tokens_to_ids("<image>")
if add_image_ids:
text, images = self.preprocess_interleaved_images_and_text(text, images)
text_inputs = self.tokenizer(
text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
)
if self.use_keyword and keywords_text is not None:
keywords_prompt_input_ids = self.tokenizer(keywords_text,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors)['input_ids']
else:
keywords_prompt_input_ids = None
if images is not None:
input_ids = text_inputs["input_ids"]
num_image_tokens = torch.sum(input_ids == self.image_token_index, dim=-1)
for i, num_image_token in enumerate(num_image_tokens):
if num_image_token < len(images[i]):
images[i] = images[i][:num_image_token]
print(f"{len(images[i]) - num_image_token} ({len(images[i])} in total) image tokens in the text are truncated due to the max sequence length; removing the extra images.")
# flatten images
images = [image for images_per_text in images for image in images_per_text]
image_inputs = self.process_images(images)
else:
image_inputs = {"pixel_values": None, "coords": None}
return BatchFeature(data={**text_inputs, **image_inputs, "keyword_prompt_input_ids": keywords_prompt_input_ids})
def batch_decode(self, *args, **kwargs):
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]):
results = {}
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs))
for k in model_inputs[0].keys():
if k == "pixel_values" or k == "coords":
results[k] = model_inputs[0][k] if model_inputs[0][k] is not None else None
else:
results[k] = torch.cat([model_inputs[0][k]], dim=0) if model_inputs[0][k] is not None else None
return results
@classmethod
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
args = []
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
token = kwargs.pop("token", None)
local_files_only = kwargs.pop("local_files_only", False)
revision = kwargs.pop("revision", None)
subfolder = kwargs.pop("subfolder", "")
from_pipeline = kwargs.pop("_from_pipeline", None)
from_auto_class = kwargs.pop("_from_auto", False)
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class}
if from_pipeline is not None:
user_agent["using_pipeline"] = from_pipeline
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if os.path.isdir(pretrained_model_name_or_path):
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME)
if os.path.isfile(pretrained_model_name_or_path):
resolved_processor_file = pretrained_model_name_or_path
is_local = True
elif is_remote_url(pretrained_model_name_or_path):
processor_file = pretrained_model_name_or_path
resolved_processor_file = download_url(pretrained_model_name_or_path)
else:
processor_file = IMAGE_PROCESSOR_NAME
try:
# Load from local folder or from cache or download from model Hub and cache
resolved_processor_file = cached_file(
pretrained_model_name_or_path,
processor_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
user_agent=user_agent,
revision=revision,
subfolder=subfolder,
_raise_exceptions_for_missing_entries=True,
)
except EnvironmentError:
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to
# the original exception.
raise
except Exception:
# For any other exception, we throw a generic error.
raise EnvironmentError(
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load"
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the"
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a"
f" directory containing a {IMAGE_PROCESSOR_NAME} file"
)
# Existing processors on the Hub created before #27761 being merged don't have `processor_config.json` (if not
# updated afterward), and we need to keep `from_pretrained` work. So here it fallbacks to the empty dict.
# (`cached_file` called using `_raise_exceptions_for_missing_entries=False` to avoid exception)
# However, for models added in the future, we won't get the expected error if this file is missing.
if resolved_processor_file is None:
image_processor_dict = {}
try:
# Load processor dict
with open(resolved_processor_file, "r", encoding="utf-8") as reader:
text = reader.read()
image_processor_dict = json.loads(text)
except json.JSONDecodeError:
raise EnvironmentError(
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file."
)
for attribute_name in cls.attributes:
class_name = getattr(cls, f"{attribute_name}_class")
if isinstance(class_name, tuple):
if attribute_name == "tokenizer":
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name)
use_fast = kwargs.get("use_fast", True)
if use_fast and classes[1] is not None:
attribute_class = classes[1]
else:
attribute_class = classes[0]
elif attribute_name == "image_processor":
image_processor_type = image_processor_dict.get("image_processor_type", None)
if image_processor_type is not None:
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}"
attribute_class = getattr(transformers_module, image_processor_type)
else:
attribute_class = getattr(transformers_module, class_name[0])
else:
raise ValueError(f"Invalid attribute name: {attribute_name}")
else:
attribute_class = getattr(transformers_module, class_name)
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs))
return args