import gradio as gr import spaces import os import time from PIL import Image import functools import torch import matplotlib.pyplot as plt import re import ast from model import GeckoForConditionalGeneration, GeckoConfig, GeckoProcessor, chat_gecko, chat_gecko_stream from model.conversation import conv_templates from typing import List from io import StringIO import sys class Capturing(list): def __enter__(self): self._stdout = sys.stdout sys.stdout = self._stringio = StringIO() return self def __exit__(self, *args): self.extend(self._stringio.getvalue().splitlines()) del self._stringio # free up some memory sys.stdout = self._stdout # initialization topk = 1 keyword_criteria = 'word' positional_information = 'explicit' vision_feature_select_strategy = 'cls' patch_picking_strategy = 'last_layer' cropping_method = 'naive' crop_size = 384 visualize_topk_patches = False print_keyword=True print_topk_patches = True torch_dtype = torch.float16 attn_implementation = 'flash_attention_2' device_map = 'cuda' conv_template = conv_templates['llama_3'] model = 'TIGER-Lab/Mantis-8B-siglip-llama3' config = GeckoConfig.from_pretrained(model, topk=topk, visualize_topk_patches=visualize_topk_patches, keyword_criteria=keyword_criteria, positional_information=positional_information, vision_feature_select_strategy=vision_feature_select_strategy, patch_picking_strategy=patch_picking_strategy, print_keyword=print_keyword) processor = GeckoProcessor.from_pretrained(model, config=config, use_keyword=True, cropping_method=cropping_method, crop_size=crop_size) model = GeckoForConditionalGeneration.from_pretrained( model, config=config) model.load_text_encoder(processor) @spaces.GPU def generate_stream(text:str, images:List[Image.Image], history: List[dict], **kwargs): global processor, model model = model.to("cuda") if not images: images = None # print(history) print(f'length of images: {len(images)}') generator, print_kw, inputs = chat_gecko_stream(text, images, model, processor, history=history, **kwargs) texts = [] # for text, history in chat_gecko_stream(text, images, model, processor, history=history, **kwargs): # yield text for text, history in generator: texts.append(text) # return text return texts, print_kw, inputs @spaces.GPU def generate(text:str, images:List[Image.Image], history: List[dict], **kwargs): global processor, model model = model.to("cuda") if not images: images = None generated_text, history = chat_gecko(text, images, model, processor, history=history, **kwargs) return generated_text def enable_next_image(uploaded_images, image): uploaded_images.append(image) return uploaded_images, gr.MultimodalTextbox(value=None, interactive=False) def add_message(history, message): if message["files"]: for file in message["files"]: history.append([(file,), None]) if message["text"]: history.append([message["text"], None]) return history, gr.MultimodalTextbox(value=None) def print_like_dislike(x: gr.LikeData): print(x.index, x.value, x.liked) def get_chat_history(history): chat_history = [] user_role = conv_template.roles[0] assistant_role = conv_template.roles[1] for i, message in enumerate(history): if isinstance(message[0], str): chat_history.append({"role": user_role, "text": message[0]}) if i != len(history) - 1: assert message[1], "The bot message is not provided, internal error" chat_history.append({"role": assistant_role, "text": message[1]}) else: assert not message[1], "the bot message internal error, get: {}".format(message[1]) chat_history.append({"role": assistant_role, "text": ""}) return chat_history def get_chat_images(history): images = [] for message in history: if isinstance(message[0], tuple): images.extend(message[0]) return images def bot(history, topk=None): print(history) cur_messages = {"text": "", "images": []} for message in history[::-1]: if message[1]: break if isinstance(message[0], str): cur_messages["text"] = message[0] + " " + cur_messages["text"] elif isinstance(message[0], tuple): cur_messages["images"].extend(message[0]) cur_messages["text"] = cur_messages["text"].strip() cur_messages["images"] = cur_messages["images"][::-1] if not cur_messages["text"]: raise gr.Error("Please enter a message") if cur_messages['text'].count("") < len(cur_messages['images']): gr.Warning("The number of images uploaded is more than the number of placeholders in the text. Will automatically prepend to the text.") cur_messages['text'] = " "* (len(cur_messages['images']) - cur_messages['text'].count("")) + cur_messages['text'] history[-1][0] = cur_messages["text"] if cur_messages['text'].count("") > len(cur_messages['images']): gr.Warning("The number of images uploaded is less than the number of placeholders in the text. Will automatically remove extra placeholders from the text.") cur_messages['text'] = cur_messages['text'][::-1].replace(""[::-1], "", cur_messages['text'].count("") - len(cur_messages['images']))[::-1] history[-1][0] = cur_messages["text"] chat_history = get_chat_history(history) chat_images = get_chat_images(history) generation_kwargs = { "max_new_tokens": 4096, "num_beams": 1, "do_sample": False, "topk": topk, } response = generate_stream(None, chat_images, chat_history, **generation_kwargs) num_images = len(response[2].pixel_values) coords = response[1][-num_images:] print_kw = '\n'.join(response[1][:-num_images-1]) patches_fig = plot_patches(response[2]) topk_patches_fig = plot_topk_patches(response[2], coords) for _output in response[0]: history[-1][1] = _output time.sleep(0.05) yield history, print_kw, patches_fig, topk_patches_fig def plot_patches(inputs): pixel_value = inputs.pixel_values[0].cpu().numpy() x, y = inputs.coords[0][-1][0] + 1, inputs.coords[0][-1][1] + 1 fig, axes = plt.subplots(y, x, figsize=(x * 4, y * 4)) for i in range(y): for j in range(x): axes[i, j].imshow(pixel_value[1 + i * x + j].transpose(1, 2, 0)) axes[i, j].axis('off') return fig def plot_topk_patches(inputs, selected_coords): selected_coords_list = [] for selected_coord in selected_coords: match = re.search(r"\[\[.*\]\]", selected_coord) if match: coordinates_str = match.group(0) # Convert the string representation of the list to an actual list coordinates = ast.literal_eval(coordinates_str) selected_coords_list.append(coordinates) num_images = len(selected_coords_list) fig, axes = plt.subplots(num_images, len(selected_coords_list[0])+1, figsize=((len(selected_coords_list[0])+1) * 10, num_images * 10)) if num_images == 1: xmax = inputs.coords[0][-1][0] + 1 for j in range(len(selected_coords_list[0])+1): if j == 0: axes[j].imshow(inputs.pixel_values[0][0].cpu().numpy().transpose(1, 2, 0)) axes[j].axis('off') continue x, y = selected_coords_list[0][j-1][0], selected_coords_list[0][j-1][1] axes[j].imshow(inputs.pixel_values[0][1 + y * xmax + x].cpu().numpy().transpose(1, 2, 0)) axes[j].axis('off') else: for i in range(num_images): xmax = inputs.coords[i][-1][0] + 1 for j in range(len(selected_coords_list[0])+1): if j == 0: axes[i, j].imshow(inputs.pixel_values[i][0].cpu().numpy().transpose(1, 2, 0)) continue x, y = selected_coords_list[i][j-1][0], selected_coords_list[i][j-1][1] axes[i, j].imshow(inputs.pixel_values[i][1 + y * xmax + x].cpu().numpy().transpose(1, 2, 0)) axes[i, j].axis('off') return fig def build_demo(): with gr.Blocks() as demo: # gr.Markdown(""" # Mantis # Mantis is a multimodal conversational AI model that can chat with users about images and text. It's optimized for multi-image reasoning, where inverleaved text and images can be used to generate responses. # ### [Paper](https://arxiv.org/abs/2405.01483) | [Github](https://github.com/TIGER-AI-Lab/Mantis) | [Models](https://huggingface.co/collections/TIGER-Lab/mantis-6619b0834594c878cdb1d6e4) | [Dataset](https://huggingface.co/datasets/TIGER-Lab/Mantis-Instruct) | [Website](https://tiger-ai-lab.github.io/Mantis/) # """) # gr.Markdown("""## Chat with Mantis # Mantis supports interleaved text-image input format, where you can simply use the placeholder `` to indicate the position of uploaded images. # The model is optimized for multi-image reasoning, while preserving the ability to chat about text and images in a single conversation. # (The model currently serving is [🤗 TIGER-Lab/Mantis-8B-siglip-llama3](https://huggingface.co/TIGER-Lab/Mantis-8B-siglip-llama3)) # """) chatbot = gr.Chatbot(line_breaks=True) chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload images. Please use to indicate the position of uploaded images", show_label=True) chat_msg = chat_input.submit(add_message, [chatbot, chat_input], [chatbot, chat_input]) print_kw = gr.Textbox(label="keywords") depict_patches = gr.Plot(label="image patches", format="png") depict_topk_patches = gr.Plot(label="top-k image patches", format="png") # with gr.Accordion(label='Advanced options', open=False): # temperature = gr.Slider( # label='Temperature', # minimum=0.1, # maximum=2.0, # step=0.1, # value=0.2, # interactive=True # ) # top_p = gr.Slider( # label='Top-p', # minimum=0.05, # maximum=1.0, # step=0.05, # value=1.0, # interactive=True # ) topk = gr.Slider( label='Top-k', minimum=1, maximum=10, step=1, value=1, interactive=True) bot_msg = chat_msg.success(bot, chatbot, chatbot, api_name="bot_response") chatbot.like(print_like_dislike, None, None) with gr.Row(): send_button = gr.Button("Send") clear_button = gr.ClearButton([chatbot, chat_input]) send_button.click( add_message, [chatbot, chat_input], [chatbot, chat_input] ).then( bot, [chatbot, topk], [chatbot, print_kw, depict_patches, depict_topk_patches], api_name="bot_response" ) gr.Examples( examples=[ { "text": open("gradio/examples/little_girl.txt").read(), "files": ["gradio/examples/little_girl.jpg"] }, { "text": open("gradio/examples/bus_luggage.txt").read(), "files": ["gradio/examples/bus_luggage.jpg"] }, ], inputs=[chat_input], ) # gr.Markdown(""" # ## Citation # ``` # @article{jiang2024mantis, # title={MANTIS: Interleaved Multi-Image Instruction Tuning}, # author={Jiang, Dongfu and He, Xuan and Zeng, Huaye and Wei, Con and Ku, Max and Liu, Qian and Chen, Wenhu}, # journal={arXiv preprint arXiv:2405.01483}, # year={2024} # } # ```""") return demo if __name__ == "__main__": demo = build_demo() demo.launch(share=False)