Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Upload folder using huggingface_hub
Browse files- README.md +8 -5
- app.py +113 -0
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,12 +1,15 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: purple
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.16.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: LLM Voice Chat
|
3 |
+
emoji: 💻
|
4 |
colorFrom: purple
|
5 |
+
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.16.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
+
short_description: Talk to an LLM with ElevenLabs
|
12 |
+
tags: [webrtc, websocket, gradio, secret|TWILIO_ACCOUNT_SID, secret|TWILIO_AUTH_TOKEN, secret|GROQ_API_KEY, secret|ELEVENLABS_API_KEY]
|
13 |
---
|
14 |
|
15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastrtc import (
|
2 |
+
ReplyOnPause,
|
3 |
+
AdditionalOutputs,
|
4 |
+
Stream,
|
5 |
+
aggregate_bytes_to_16bit,
|
6 |
+
get_twilio_turn_credentials,
|
7 |
+
WebRTCError,
|
8 |
+
stt,
|
9 |
+
audio_to_bytes,
|
10 |
+
)
|
11 |
+
import numpy as np
|
12 |
+
import gradio as gr
|
13 |
+
from gradio.utils import get_space
|
14 |
+
from groq import Groq
|
15 |
+
from elevenlabs import ElevenLabs
|
16 |
+
from dotenv import load_dotenv
|
17 |
+
import time
|
18 |
+
import os
|
19 |
+
from fastapi import FastAPI
|
20 |
+
|
21 |
+
load_dotenv()
|
22 |
+
groq_client = Groq()
|
23 |
+
tts_client = ElevenLabs(api_key=os.getenv("ELEVENLABS_API_KEY"))
|
24 |
+
|
25 |
+
|
26 |
+
# See "Talk to Claude" in Cookbook for an example of how to keep
|
27 |
+
# track of the chat history.
|
28 |
+
def response(
|
29 |
+
audio: tuple[int, np.ndarray],
|
30 |
+
chatbot: list[dict] | None = None,
|
31 |
+
):
|
32 |
+
try:
|
33 |
+
chatbot = chatbot or []
|
34 |
+
messages = [{"role": d["role"], "content": d["content"]} for d in chatbot]
|
35 |
+
start = time.time()
|
36 |
+
# text = stt(audio)
|
37 |
+
text = groq_client.audio.transcriptions.create(
|
38 |
+
file=("audio-file.mp3", audio_to_bytes(audio)),
|
39 |
+
model="whisper-large-v3-turbo",
|
40 |
+
response_format="verbose_json",
|
41 |
+
).text
|
42 |
+
print("transcription", time.time() - start)
|
43 |
+
print("prompt", text)
|
44 |
+
chatbot.append({"role": "user", "content": text})
|
45 |
+
yield AdditionalOutputs(chatbot)
|
46 |
+
messages.append({"role": "user", "content": text})
|
47 |
+
response_text = (
|
48 |
+
groq_client.chat.completions.create(
|
49 |
+
model="llama-3.1-8b-instant",
|
50 |
+
max_tokens=512,
|
51 |
+
messages=messages, # type: ignore
|
52 |
+
)
|
53 |
+
.choices[0]
|
54 |
+
.message.content
|
55 |
+
)
|
56 |
+
|
57 |
+
chatbot.append({"role": "assistant", "content": response_text})
|
58 |
+
|
59 |
+
iterator = tts_client.text_to_speech.convert_as_stream(
|
60 |
+
text=response_text, # type: ignore
|
61 |
+
voice_id="JBFqnCBsd6RMkjVDRZzb",
|
62 |
+
model_id="eleven_multilingual_v2",
|
63 |
+
output_format="pcm_24000",
|
64 |
+
)
|
65 |
+
for chunk in aggregate_bytes_to_16bit(iterator):
|
66 |
+
audio_array = np.frombuffer(chunk, dtype=np.int16).reshape(1, -1)
|
67 |
+
yield (24000, audio_array)
|
68 |
+
yield AdditionalOutputs(chatbot)
|
69 |
+
except Exception as e:
|
70 |
+
import traceback
|
71 |
+
|
72 |
+
traceback.print_exc()
|
73 |
+
raise WebRTCError(traceback.format_exc())
|
74 |
+
|
75 |
+
|
76 |
+
chatbot = gr.Chatbot(type="messages")
|
77 |
+
stream = Stream(
|
78 |
+
modality="audio",
|
79 |
+
mode="send-receive",
|
80 |
+
handler=ReplyOnPause(response, input_sample_rate=16000),
|
81 |
+
additional_outputs_handler=lambda a, b: b,
|
82 |
+
additional_inputs=[chatbot],
|
83 |
+
additional_outputs=[chatbot],
|
84 |
+
rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
|
85 |
+
concurrency_limit=20 if get_space() else None,
|
86 |
+
)
|
87 |
+
for id, block in stream.ui.blocks.items():
|
88 |
+
if isinstance(block, gr.HTML):
|
89 |
+
stream.ui.blocks[id] = gr.HTML(
|
90 |
+
"""
|
91 |
+
<h1 style='text-align: center'>
|
92 |
+
LLM Voice Chat (Powered by Groq, ElevenLabs, and WebRTC ⚡️)
|
93 |
+
</h1>
|
94 |
+
"""
|
95 |
+
)
|
96 |
+
|
97 |
+
# Mount the STREAM UI to the FastAPI app
|
98 |
+
# Because I don't want to build the UI manually
|
99 |
+
app = FastAPI()
|
100 |
+
gr.mount_gradio_app(app, stream.ui, path="/")
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
import os
|
105 |
+
|
106 |
+
if (mode := os.getenv("MODE")) == "UI":
|
107 |
+
stream.ui.launch(server_port=7860)
|
108 |
+
elif mode == "PHONE":
|
109 |
+
stream.fastphone(host="0.0.0.0", port=7860)
|
110 |
+
else:
|
111 |
+
import uvicorn
|
112 |
+
|
113 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastrtc[stopword]
|
2 |
+
python-dotenv
|
3 |
+
openai
|
4 |
+
twilio
|
5 |
+
groq
|
6 |
+
elevenlabs
|