File size: 7,409 Bytes
384d9d6
547518c
384d9d6
 
 
 
 
 
d6241cc
 
 
 
 
 
 
384d9d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6241cc
 
384d9d6
 
 
 
547518c
384d9d6
 
 
547518c
384d9d6
 
 
547518c
 
 
 
384d9d6
 
 
 
 
547518c
384d9d6
547518c
 
 
 
 
 
 
 
 
 
384d9d6
d6241cc
 
 
 
 
384d9d6
 
d6241cc
 
 
 
384d9d6
 
d6241cc
547518c
 
 
 
 
 
 
 
 
d6241cc
547518c
 
384d9d6
547518c
 
 
 
 
384d9d6
 
 
d6241cc
 
 
 
384d9d6
 
 
 
d6241cc
 
 
 
 
384d9d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6241cc
384d9d6
 
 
 
 
 
 
 
547518c
384d9d6
 
d6241cc
 
 
 
 
 
 
 
384d9d6
547518c
 
 
 
 
 
 
 
 
 
384d9d6
 
d6241cc
 
 
 
384d9d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6241cc
384d9d6
 
 
 
 
 
 
 
 
 
 
d6241cc
384d9d6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
"""Streamlit app for Presidio."""
import os
from json import JSONEncoder

import pandas as pd
import streamlit as st
from annotated_text import annotated_text

from presidio_helpers import (
    get_supported_entities,
    analyze,
    anonymize,
    annotate,
    create_fake_data,
    analyzer_engine,
)

st.set_page_config(page_title="Presidio demo", layout="wide")

# Sidebar
st.sidebar.header(
    """
PII De-Identification with Microsoft Presidio
"""
)

st.sidebar.info(
    "Presidio is an open source customizable framework for PII detection and de-identification\n"
    "[Code](https://aka.ms/presidio) | "
    "[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
    "[Installation](https://microsoft.github.io/presidio/installation/) | "
    "[FAQ](https://microsoft.github.io/presidio/faq/)",
    icon="ℹ️",
)

st.sidebar.markdown(
    "[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
    "[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
    "![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)

st_model = st.sidebar.selectbox(
    "NER model for PII detection",
    [
        "StanfordAIMI/stanford-deidentifier-base",
        "obi/deid_roberta_i2b2",
        "flair/ner-english-large",
        "en_core_web_lg",
    ],
    index=1,
    help="""
    Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
    Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair.
    """,
)
st.sidebar.markdown("> Note: Models might take some time to download. ")

st_operator = st.sidebar.selectbox(
    "De-identification approach",
    ["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
    index=1,
    help="""
    Select which manipulation to the text is requested after PII has been identified.\n
    - Redact: Completely remove the PII text\n
    - Replace: Replace the PII text with a constant, e.g. <PERSON>\n
    - Synthesize: Replace with fake values (requires an OpenAI key)\n
    - Highlight: Shows the original text with PII highlighted in colors\n
    - Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
    - Hash: Replaces with the hash of the PII string\n
    - Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
         """,
)
st_mask_char = "*"
st_number_of_chars = 15
st_encrypt_key = "WmZq4t7w!z%C&F)J"
st_openai_key = ""
st_openai_model = "text-davinci-003"
if st_operator == "mask":
    st_number_of_chars = st.sidebar.number_input(
        "number of chars", value=st_number_of_chars, min_value=0, max_value=100
    )
    st_mask_char = st.sidebar.text_input(
        "Mask character", value=st_mask_char, max_chars=1
    )
elif st_operator == "encrypt":
    st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
elif st_operator == "synthesize":
    st_openai_key = st.sidebar.text_input(
        "OPENAI_KEY",
        value=os.getenv("OPENAI_KEY", default=""),
        help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
        type="password",
    )
    st_openai_model = st.sidebar.text_input(
        "OpenAI model for text synthesis",
        value=st_openai_model,
        help="See more here: https://platform.openai.com/docs/models/",
    )
st_threshold = st.sidebar.slider(
    label="Acceptance threshold",
    min_value=0.0,
    max_value=1.0,
    value=0.35,
    help="Define the threshold for accepting a detection as PII. See more here: ",
)

st_return_decision_process = st.sidebar.checkbox(
    "Add analysis explanations to findings",
    value=False,
    help="Add the decision process to the output table. "
         "More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
)

st_entities = st.sidebar.multiselect(
    label="Which entities to look for?",
    options=get_supported_entities(st_model),
    default=list(get_supported_entities(st_model)),
    help="Limit the list of PII entities detected. "
         "This list is dynamic and based on the NER model and registered recognizers. "
         "More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
)

# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()

# Read default text
with open("demo_text.txt") as f:
    demo_text = f.readlines()

# Create two columns for before and after
col1, col2 = st.columns(2)

# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
    label="Enter text",
    value="".join(demo_text),
    height=400,
)

st_analyze_results = analyze(
    st_model=st_model,
    text=st_text,
    entities=st_entities,
    language="en",
    score_threshold=st_threshold,
    return_decision_process=st_return_decision_process,
)

# After
if st_operator not in ("highlight", "synthesize"):
    with col2:
        st.subheader(f"Output")
        st_anonymize_results = anonymize(
            text=st_text,
            operator=st_operator,
            mask_char=st_mask_char,
            number_of_chars=st_number_of_chars,
            encrypt_key=st_encrypt_key,
            analyze_results=st_analyze_results,
        )
        st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
elif st_operator == "synthesize":
    with col2:
        st.subheader(f"OpenAI Generated output")
        fake_data = create_fake_data(
            st_text,
            st_analyze_results,
            openai_key=st_openai_key,
            openai_model_name=st_openai_model,
        )
        st.text_area(label="Synthetic data", value=fake_data, height=400)
else:
    st.subheader("Highlighted")
    annotated_tokens = annotate(
        text=st_text,
        analyze_results=st_analyze_results
    )
    # annotated_tokens
    annotated_text(*annotated_tokens)


# json result
class ToDictEncoder(JSONEncoder):
    """Encode dict to json."""

    def default(self, o):
        """Encode to JSON using to_dict."""
        return o.to_dict()


# table result
st.subheader(
    "Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
    df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
    df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]

    df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
        {
            "entity_type": "Entity type",
            "text": "Text",
            "start": "Start",
            "end": "End",
            "score": "Confidence",
        },
        axis=1,
    )
    df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
    if st_return_decision_process:
        analysis_explanation_df = pd.DataFrame.from_records(
            [r.analysis_explanation.to_dict() for r in st_analyze_results]
        )
        df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
    st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
    st.text("No findings")