Spaces:
Sleeping
Sleeping
File size: 7,409 Bytes
384d9d6 547518c 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 547518c 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 d6241cc 547518c d6241cc 547518c 384d9d6 547518c 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 547518c 384d9d6 d6241cc 384d9d6 547518c 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 d6241cc 384d9d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
"""Streamlit app for Presidio."""
import os
from json import JSONEncoder
import pandas as pd
import streamlit as st
from annotated_text import annotated_text
from presidio_helpers import (
get_supported_entities,
analyze,
anonymize,
annotate,
create_fake_data,
analyzer_engine,
)
st.set_page_config(page_title="Presidio demo", layout="wide")
# Sidebar
st.sidebar.header(
"""
PII De-Identification with Microsoft Presidio
"""
)
st.sidebar.info(
"Presidio is an open source customizable framework for PII detection and de-identification\n"
"[Code](https://aka.ms/presidio) | "
"[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
"[Installation](https://microsoft.github.io/presidio/installation/) | "
"[FAQ](https://microsoft.github.io/presidio/faq/)",
icon="ℹ️",
)
st.sidebar.markdown(
"[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)" # noqa
"[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](https://opensource.org/licenses/MIT)"
"![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)
st_model = st.sidebar.selectbox(
"NER model for PII detection",
[
"StanfordAIMI/stanford-deidentifier-base",
"obi/deid_roberta_i2b2",
"flair/ner-english-large",
"en_core_web_lg",
],
index=1,
help="""
Select which Named Entity Recognition (NER) model to use for PII detection, in parallel to rule-based recognizers.
Presidio supports multiple NER packages off-the-shelf, such as spaCy, Huggingface, Stanza and Flair.
""",
)
st.sidebar.markdown("> Note: Models might take some time to download. ")
st_operator = st.sidebar.selectbox(
"De-identification approach",
["redact", "replace", "synthesize", "highlight", "mask", "hash", "encrypt"],
index=1,
help="""
Select which manipulation to the text is requested after PII has been identified.\n
- Redact: Completely remove the PII text\n
- Replace: Replace the PII text with a constant, e.g. <PERSON>\n
- Synthesize: Replace with fake values (requires an OpenAI key)\n
- Highlight: Shows the original text with PII highlighted in colors\n
- Mask: Replaces a requested number of characters with an asterisk (or other mask character)\n
- Hash: Replaces with the hash of the PII string\n
- Encrypt: Replaces with an AES encryption of the PII string, allowing the process to be reversed
""",
)
st_mask_char = "*"
st_number_of_chars = 15
st_encrypt_key = "WmZq4t7w!z%C&F)J"
st_openai_key = ""
st_openai_model = "text-davinci-003"
if st_operator == "mask":
st_number_of_chars = st.sidebar.number_input(
"number of chars", value=st_number_of_chars, min_value=0, max_value=100
)
st_mask_char = st.sidebar.text_input(
"Mask character", value=st_mask_char, max_chars=1
)
elif st_operator == "encrypt":
st_encrypt_key = st.sidebar.text_input("AES key", value=st_encrypt_key)
elif st_operator == "synthesize":
st_openai_key = st.sidebar.text_input(
"OPENAI_KEY",
value=os.getenv("OPENAI_KEY", default=""),
help="See https://help.openai.com/en/articles/4936850-where-do-i-find-my-secret-api-key for more info.",
type="password",
)
st_openai_model = st.sidebar.text_input(
"OpenAI model for text synthesis",
value=st_openai_model,
help="See more here: https://platform.openai.com/docs/models/",
)
st_threshold = st.sidebar.slider(
label="Acceptance threshold",
min_value=0.0,
max_value=1.0,
value=0.35,
help="Define the threshold for accepting a detection as PII. See more here: ",
)
st_return_decision_process = st.sidebar.checkbox(
"Add analysis explanations to findings",
value=False,
help="Add the decision process to the output table. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/decision_process/",
)
st_entities = st.sidebar.multiselect(
label="Which entities to look for?",
options=get_supported_entities(st_model),
default=list(get_supported_entities(st_model)),
help="Limit the list of PII entities detected. "
"This list is dynamic and based on the NER model and registered recognizers. "
"More information can be found here: https://microsoft.github.io/presidio/analyzer/adding_recognizers/",
)
# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()
# Read default text
with open("demo_text.txt") as f:
demo_text = f.readlines()
# Create two columns for before and after
col1, col2 = st.columns(2)
# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
label="Enter text",
value="".join(demo_text),
height=400,
)
st_analyze_results = analyze(
st_model=st_model,
text=st_text,
entities=st_entities,
language="en",
score_threshold=st_threshold,
return_decision_process=st_return_decision_process,
)
# After
if st_operator not in ("highlight", "synthesize"):
with col2:
st.subheader(f"Output")
st_anonymize_results = anonymize(
text=st_text,
operator=st_operator,
mask_char=st_mask_char,
number_of_chars=st_number_of_chars,
encrypt_key=st_encrypt_key,
analyze_results=st_analyze_results,
)
st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
elif st_operator == "synthesize":
with col2:
st.subheader(f"OpenAI Generated output")
fake_data = create_fake_data(
st_text,
st_analyze_results,
openai_key=st_openai_key,
openai_model_name=st_openai_model,
)
st.text_area(label="Synthetic data", value=fake_data, height=400)
else:
st.subheader("Highlighted")
annotated_tokens = annotate(
text=st_text,
analyze_results=st_analyze_results
)
# annotated_tokens
annotated_text(*annotated_tokens)
# json result
class ToDictEncoder(JSONEncoder):
"""Encode dict to json."""
def default(self, o):
"""Encode to JSON using to_dict."""
return o.to_dict()
# table result
st.subheader(
"Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]
df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
{
"entity_type": "Entity type",
"text": "Text",
"start": "Start",
"end": "End",
"score": "Confidence",
},
axis=1,
)
df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
if st_return_decision_process:
analysis_explanation_df = pd.DataFrame.from_records(
[r.analysis_explanation.to_dict() for r in st_analyze_results]
)
df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
st.text("No findings")
|