File size: 9,087 Bytes
1215818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db08cce
1215818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db08cce
1215818
 
 
 
 
db08cce
1215818
 
 
 
 
db08cce
1215818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
"""Streamlit app for Presidio."""

from json import JSONEncoder
from typing import List

import pandas as pd
import spacy
import streamlit as st
from annotated_text import annotated_text
from presidio_analyzer import AnalyzerEngine, RecognizerResult, RecognizerRegistry
from presidio_analyzer.nlp_engine import NlpEngineProvider
from presidio_anonymizer import AnonymizerEngine
from presidio_anonymizer.entities import OperatorConfig

from transformers_rec import (
    STANFORD_COFIGURATION,
    TransformersRecognizer,
    BERT_DEID_CONFIGURATION,
)


# Helper methods
@st.cache
def analyzer_engine(model_path: str):
    """Return AnalyzerEngine.

    :param model_path: Which model to use for NER:
        "StanfordAIMI/stanford-deidentifier-base",
        "obi/deid_roberta_i2b2",
        "en_core_web_lg"
    """

    registry = RecognizerRegistry()
    registry.load_predefined_recognizers()

    # Set up NLP Engine according to the model of choice
    if model_path == "en_core_web_lg":
        if not spacy.util.is_package("en_core_web_lg"):
            spacy.cli.download("en_core_web_lg")
        nlp_configuration = {
            "nlp_engine_name": "spacy",
            "models": [{"lang_code": "en", "model_name": "en_core_web_lg"}],
        }
    else:
        if not spacy.util.is_package("en_core_web_sm"):
            spacy.cli.download("en_core_web_sm")
        # Using a small spaCy model + a HF NER model
        transformers_recognizer = TransformersRecognizer(model_path=model_path)

        if model_path == "StanfordAIMI/stanford-deidentifier-base":
            transformers_recognizer.load_transformer(**STANFORD_COFIGURATION)
        elif model_path == "obi/deid_roberta_i2b2":
            transformers_recognizer.load_transformer(**BERT_DEID_CONFIGURATION)

        # Use small spaCy model, no need for both spacy and HF models
        # The transformers model is used here as a recognizer, not as an NlpEngine
        nlp_configuration = {
            "nlp_engine_name": "spacy",
            "models": [{"lang_code": "en", "model_name": "en_core_web_sm"}],
        }

        registry.add_recognizer(transformers_recognizer)

    nlp_engine = NlpEngineProvider(nlp_configuration=nlp_configuration).create_engine()

    analyzer = AnalyzerEngine(nlp_engine=nlp_engine, registry=registry)
    return analyzer


@st.cache
def anonymizer_engine():
    """Return AnonymizerEngine."""
    return AnonymizerEngine()


@st.cache
def get_supported_entities():
    """Return supported entities from the Analyzer Engine."""
    return analyzer_engine(st_model).get_supported_entities()


@st.cache
def analyze(**kwargs):
    """Analyze input using Analyzer engine and input arguments (kwargs)."""
    if "entities" not in kwargs or "All" in kwargs["entities"]:
        kwargs["entities"] = None
    return analyzer_engine(st_model).analyze(**kwargs)


def anonymize(text: str, analyze_results: List[RecognizerResult]):
    """Anonymize identified input using Presidio Anonymizer.

    :param text: Full text
    :param analyze_results: list of results from presidio analyzer engine
    """

    if st_operator == "mask":
        operator_config = {
            "type": "mask",
            "masking_char": st_mask_char,
            "chars_to_mask": st_number_of_chars,
            "from_end": False,
        }

    elif st_operator == "encrypt":
        operator_config = {"key": st_encrypt_key}
    elif st_operator == "highlight":
        operator_config = {"lambda": lambda x: x}
    else:
        operator_config = None

    if st_operator == "highlight":
        operator = "custom"
    else:
        operator = st_operator

    res = anonymizer_engine().anonymize(
        text,
        analyze_results,
        operators={"DEFAULT": OperatorConfig(operator, operator_config)},
    )
    return res


def annotate(text: str, analyze_results: List[RecognizerResult]):
    """
    Highlights every identified entity on top of the text.
    :param text: full text
    :param analyze_results: list of analyzer results.
    """
    tokens = []

    # Use the anonymizer to resolve overlaps
    results = anonymize(text, analyze_results)

    # sort by start index
    results = sorted(results.items, key=lambda x: x.start)
    for i, res in enumerate(results):
        if i == 0:
            tokens.append(text[: res.start])

        # append entity text and entity type
        tokens.append((text[res.start: res.end], res.entity_type))

        # if another entity coming i.e. we're not at the last results element, add text up to next entity
        if i != len(results) - 1:
            tokens.append(text[res.end: results[i + 1].start])
        # if no more entities coming, add all remaining text
        else:
            tokens.append(text[res.end:])
    return tokens


st.set_page_config(page_title="Presidio demo", layout="wide")

# Sidebar
st.sidebar.header(
    """
PII De-Identification with Microsoft Presidio
"""
)

st.sidebar.info(
    "Presidio is an open source customizable framework for PII detection and de-identification\n"
    "[Code](https://aka.ms/presidio) | "
    "[Tutorial](https://microsoft.github.io/presidio/tutorial/) | "
    "[Installation](https://microsoft.github.io/presidio/installation/) | "
    "[FAQ](https://microsoft.github.io/presidio/faq/)",
    icon="ℹ️",
)

st.sidebar.markdown(
    "[![Pypi Downloads](https://img.shields.io/pypi/dm/presidio-analyzer.svg)](https://img.shields.io/pypi/dm/presidio-analyzer.svg)"
    "[![MIT license](https://img.shields.io/badge/license-MIT-brightgreen.svg)](http://opensource.org/licenses/MIT)"
    "![GitHub Repo stars](https://img.shields.io/github/stars/microsoft/presidio?style=social)"
)

st_model = st.sidebar.selectbox(
    "NER model",
    [
        "StanfordAIMI/stanford-deidentifier-base",
        "obi/deid_roberta_i2b2",
        "en_core_web_lg",
    ],
    index=1,
)
st.sidebar.markdown("> Note: Models might take some time to download. ")

st_operator = st.sidebar.selectbox(
    "De-identification approach",
    ["redact", "replace", "mask", "hash", "encrypt", "highlight"],
    index=1,
)

if st_operator == "mask":
    st_number_of_chars = st.sidebar.number_input(
        "number of chars", value=15, min_value=0, max_value=100
    )
    st_mask_char = st.sidebar.text_input("Mask character", value="*", max_chars=1)
elif st_operator == "encrypt":
    st_encrypt_key = st.sidebar.text_input("AES key", value="WmZq4t7w!z%C&F)J")

st_threshold = st.sidebar.slider(
    label="Acceptance threshold", min_value=0.0, max_value=1.0, value=0.35
)

st_return_decision_process = st.sidebar.checkbox(
    "Add analysis explanations to findings", value=False
)

st_entities = st.sidebar.multiselect(
    label="Which entities to look for?",
    options=get_supported_entities(),
    default=list(get_supported_entities()),
)

# Main panel
analyzer_load_state = st.info("Starting Presidio analyzer...")
engine = analyzer_engine(model_path=st_model)
analyzer_load_state.empty()

# Read default text
with open("demo_text.txt") as f:
    demo_text = f.readlines()

# Create two columns for before and after
col1, col2 = st.columns(2)

# Before:
col1.subheader("Input string:")
st_text = col1.text_area(
    label="Enter text",
    value="".join(demo_text),
    height=400,
)

st_analyze_results = analyze(
    text=st_text,
    entities=st_entities,
    language="en",
    score_threshold=st_threshold,
    return_decision_process=st_return_decision_process,
)

# After
if st_operator != "highlight":
    with col2:
        st.subheader(f"Output")
        st_anonymize_results = anonymize(st_text, st_analyze_results)
        st.text_area(label="De-identified", value=st_anonymize_results.text, height=400)
else:
    st.subheader("Highlighted")
    annotated_tokens = annotate(st_text, st_analyze_results)
    # annotated_tokens
    annotated_text(*annotated_tokens)


# json result
class ToDictEncoder(JSONEncoder):
    """Encode dict to json."""

    def default(self, o):
        """Encode to JSON using to_dict."""
        return o.to_dict()


# table result
st.subheader(
    "Findings" if not st_return_decision_process else "Findings with decision factors"
)
if st_analyze_results:
    df = pd.DataFrame.from_records([r.to_dict() for r in st_analyze_results])
    df["text"] = [st_text[res.start: res.end] for res in st_analyze_results]

    df_subset = df[["entity_type", "text", "start", "end", "score"]].rename(
        {
            "entity_type": "Entity type",
            "text": "Text",
            "start": "Start",
            "end": "End",
            "score": "Confidence",
        },
        axis=1,
    )
    df_subset["Text"] = [st_text[res.start: res.end] for res in st_analyze_results]
    if st_return_decision_process:
        analysis_explanation_df = pd.DataFrame.from_records(
            [r.analysis_explanation.to_dict() for r in st_analyze_results]
        )
        df_subset = pd.concat([df_subset, analysis_explanation_df], axis=1)
    st.dataframe(df_subset.reset_index(drop=True), use_container_width=True)
else:
    st.text("No findings")