Spaces:
Runtime error
Runtime error
import torch | |
from transformers import pipeline | |
import numpy as np | |
import gradio as gr | |
def _grab_best_device(use_gpu=False): | |
if torch.cuda.device_count() > 0 and use_gpu: | |
device = "cuda" | |
else: | |
device = "cpu" | |
return device | |
device = _grab_best_device() | |
default_model_per_language = { | |
"english": "kakao-enterprise/vits-ljs", | |
"spanish": "facebook/mms-tts-spa", | |
} | |
models_per_language = { | |
"english": [ | |
"ylacombe/vits_ljs_midlands_male_monospeaker", | |
], | |
"spanish": [ | |
"ylacombe/mms-spa-finetuned-chilean-monospeaker", | |
] | |
} | |
HUB_PATH = "ylacombe/vits_ljs_midlands_male_monospeaker" | |
pipe_dict = { | |
"current_model": "ylacombe/vits_ljs_midlands_male_monospeaker", | |
"pipe": pipeline("text-to-speech", model=HUB_PATH, device=device), | |
"original_pipe": pipeline("text-to-speech", model=default_model_per_language["english"], device=device), | |
"language": "english", | |
} | |
title = """ | |
# Explore MMS finetuning | |
## Or how to access truely multilingual TTS | |
Massively Multilingual Speech (MMS) models are light-weight, low-latency TTS models based on the [VITS architecture](https://huggingface.co/docs/transformers/model_doc/vits). | |
Meta's [MMS](https://arxiv.org/abs/2305.13516) project, aiming to provide speech technology across a diverse range of languages. You can find more details about the supported languages and their ISO 639-3 codes in the [MMS Language Coverage Overview](https://dl.fbaipublicfiles.com/mms/misc/language_coverage_mms.html), | |
and see all MMS-TTS checkpoints on the Hugging Face Hub: [facebook/mms-tts](https://huggingface.co/models?sort=trending&search=facebook%2Fmms-tts). | |
Coupled with the right data and the right training recipe, you can get an excellent finetuned version of every MMS checkpoints in **20 minutes** with as little as **80 to 150 samples**. | |
Training recipe available in this [github repository](https://github.com/ylacombe/finetune-hf-vits)! | |
""" | |
max_speakers = 15 | |
# Inference | |
def generate_audio(text, model_id, language): | |
if pipe_dict["language"] != language: | |
gr.Warning(f"Language has changed - loading new default model: {default_model_per_language[language]}") | |
pipe_dict["language"] = language | |
pipe_dict["original_pipe"] = pipeline("text-to-speech", model=default_model_per_language[language], device=device) | |
if pipe_dict["current_model"] != model_id: | |
gr.Warning("Model has changed - loading new model") | |
pipe_dict["pipe"] = pipeline("text-to-speech", model=model_id, device=device) | |
pipe_dict["current_model"] = model_id | |
num_speakers = pipe_dict["pipe"].model.config.num_speakers | |
out = [] | |
# first generate original model result | |
output = pipe_dict["original_pipe"](text) | |
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Non finetuned model prediction {default_model_per_language[language]}", show_label=True, | |
visible=True) | |
out.append(output) | |
if num_speakers>1: | |
for i in range(min(num_speakers, max_speakers - 1)): | |
forward_params = {"speaker_id": i} | |
output = pipe_dict["pipe"](text, forward_params=forward_params) | |
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, | |
visible=True) | |
out.append(output) | |
out.extend([gr.Audio(visible=False)]*(max_speakers-num_speakers)) | |
else: | |
output = pipe_dict["pipe"](text) | |
output = gr.Audio(value = (output["sampling_rate"], output["audio"].squeeze()), type="numpy", autoplay=False, label="Generated Audio - Mono speaker", show_label=True, | |
visible=True) | |
out.append(output) | |
out.extend([gr.Audio(visible=False)]*(max_speakers-2)) | |
return out | |
css = """ | |
#container{ | |
margin: 0 auto; | |
max-width: 80rem; | |
} | |
#intro{ | |
max-width: 100%; | |
text-align: center; | |
margin: 0 auto; | |
} | |
""" | |
# Gradio blocks demo | |
with gr.Blocks(css=css) as demo_blocks: | |
gr.Markdown(title, elem_id="intro") | |
with gr.Row(): | |
with gr.Column(): | |
inp_text = gr.Textbox(label="Input Text", info="What sentence would you like to synthesise?") | |
btn = gr.Button("Generate Audio!") | |
language = gr.Dropdown( | |
default_model_per_language.keys(), | |
value = "spanish", | |
label = "language", | |
info = "Language that you want to test" | |
) | |
model_id = gr.Dropdown( | |
models_per_language["spanish"], | |
value="ylacombe/mms-spa-finetuned-chilean-monospeaker", | |
label="Model", | |
info="Model you want to test", | |
) | |
with gr.Column(): | |
outputs = [] | |
for i in range(max_speakers): | |
out_audio = gr.Audio(type="numpy", autoplay=False, label=f"Generated Audio - speaker {i}", show_label=True, visible=False) | |
outputs.append(out_audio) | |
with gr.Accordion("Datasets and models details", open=False): | |
gr.Markdown(""" | |
For each language, we used 100 to 150 samples of a single speaker to finetune the model. | |
### Spanish | |
* **Model**: [Spanish MMS TTS](https://huggingface.co/facebook/mms-tts-spa). | |
* **Datasets**: | |
- [Chilean Spanish TTS dataset](https://huggingface.co/datasets/ylacombe/google-chilean-spanish). | |
### English | |
* **Model**: [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs) | |
* **Dataset**: [British Isles Accent](https://huggingface.co/datasets/ylacombe/english_dialects). For each accent, we used 100 to 150 samples of a single speaker to finetune [VITS-ljs](https://huggingface.co/kakao-enterprise/vits-ljs). | |
""") | |
with gr.Accordion("Run VITS and MMS with transformers", open=False): | |
gr.Markdown( | |
""" | |
```bash | |
pip install transformers | |
``` | |
```py | |
from transformers import pipeline | |
import scipy | |
pipe = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs", device=0) | |
results = pipe("A cinematic shot of a baby racoon wearing an intricate italian priest robe") | |
# write to a wav file | |
scipy.io.wavfile.write("audio_vits.wav", rate=results["sampling_rate"], data=results["audio"].squeeze()) | |
``` | |
""" | |
) | |
language.change(lambda language: gr.Dropdown( | |
models_per_language[language], | |
value=models_per_language[language][0], | |
label="Model", | |
info="Model you want to test", | |
), | |
language, | |
model_id | |
) | |
btn.click(generate_audio, [inp_text, model_id, language], outputs) | |
demo_blocks.queue().launch() |