changed the model
Browse files- Components/model_Responce.py +41 -17
Components/model_Responce.py
CHANGED
@@ -1,9 +1,11 @@
|
|
|
|
1 |
import pickle
|
2 |
import joblib
|
3 |
import numpy as np
|
4 |
import tensorflow as tf
|
5 |
from keras.utils import pad_sequences
|
6 |
from keras.preprocessing.text import Tokenizer
|
|
|
7 |
|
8 |
# Load the model from the pickle file
|
9 |
# filename = 'F:/CVFilter/models/model_pk.pkl'
|
@@ -13,26 +15,48 @@ from keras.preprocessing.text import Tokenizer
|
|
13 |
# Load the saved model
|
14 |
# model = joblib.load('F:\CVFilter\models\model.joblib')
|
15 |
|
16 |
-
model = tf.keras.models.load_model('models\model.h5')
|
17 |
|
18 |
-
|
19 |
-
#
|
20 |
-
with open(tokenfile, 'rb') as file:
|
21 |
-
loaded_tokenized_words = pickle.load(file)
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
outcome_labels = ['Business Analyst', 'Cyber Security','Data Engineer','Data Science','DevOps','Machine Learning Engineer','Mobile App Developer','Network Engineer','Quality Assurance','Software Engineer']
|
31 |
|
32 |
def model_prediction(text, model=model, tokenizer=tokenizer, labels=outcome_labels):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
#
|
37 |
-
#
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import pickle
|
3 |
import joblib
|
4 |
import numpy as np
|
5 |
import tensorflow as tf
|
6 |
from keras.utils import pad_sequences
|
7 |
from keras.preprocessing.text import Tokenizer
|
8 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
|
10 |
# Load the model from the pickle file
|
11 |
# filename = 'F:/CVFilter/models/model_pk.pkl'
|
|
|
15 |
# Load the saved model
|
16 |
# model = joblib.load('F:\CVFilter\models\model.joblib')
|
17 |
|
|
|
18 |
|
19 |
+
# Load Local Model and Local tokenizer
|
20 |
+
# model = tf.keras.models.load_model('models\model.h5')
|
|
|
|
|
21 |
|
22 |
+
# tokenfile = 'tokenized_words/tokenized_words.pkl'
|
23 |
+
# # Load the tokenized words from the pickle file
|
24 |
+
# with open(tokenfile, 'rb') as file:
|
25 |
+
# loaded_tokenized_words = pickle.load(file)
|
26 |
+
|
27 |
+
# max_review_length = 200
|
28 |
+
# tokenizer = Tokenizer(num_words=10000, #max no. of unique words to keep
|
29 |
+
# filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~',
|
30 |
+
# lower=True #convert to lower case
|
31 |
+
# )
|
32 |
+
# tokenizer.fit_on_texts(loaded_tokenized_words)
|
33 |
+
|
34 |
+
|
35 |
+
# Load Huggingface model and tokenizer
|
36 |
+
# Define the model name
|
37 |
+
model_name = "fazni/distilbert-base-uncased-career-path-prediction"
|
38 |
+
|
39 |
+
# Load the model
|
40 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
41 |
+
|
42 |
+
# Load the tokenizer
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
44 |
|
45 |
outcome_labels = ['Business Analyst', 'Cyber Security','Data Engineer','Data Science','DevOps','Machine Learning Engineer','Mobile App Developer','Network Engineer','Quality Assurance','Software Engineer']
|
46 |
|
47 |
def model_prediction(text, model=model, tokenizer=tokenizer, labels=outcome_labels):
|
48 |
+
# Local model
|
49 |
+
# seq = tokenizer.texts_to_sequences([text])
|
50 |
+
# padded = pad_sequences(seq, maxlen=max_review_length)
|
51 |
+
# pred = model.predict(padded)
|
52 |
+
# return labels[np.argmax(pred)]
|
53 |
+
|
54 |
+
# Hugging face model
|
55 |
+
# Tokenize the text
|
56 |
+
inputs = tokenizer(text, return_tensors="pt")
|
57 |
+
outputs = model(**inputs)
|
58 |
+
|
59 |
+
# Get the predicted class probabilities
|
60 |
+
probs = outputs.logits.softmax(dim=-1)
|
61 |
+
|
62 |
+
return labels[torch.argmax(probs)]
|