import os from dotenv import load_dotenv from langchain_google_genai import GoogleGenerativeAI from langchain.chains import RetrievalQA from langchain.vectorstores import FAISS from langchain.prompts import PromptTemplate load_dotenv() # take environment variables from .env (especially openai api key) # Create Google Palm LLM model model_name = "models/text-bison-001" llm = GoogleGenerativeAI(google_api_key=os.environ["GOOGLE_PALM_API"], model_name=model_name,temperature=0.1) vectordb_file_path = "faiss_index_V2" def get_qa_chain(embeddings): # Load the vector database from the local folder vectordb = FAISS.load_local(vectordb_file_path, embeddings) # Create a retriever for querying the vector database retriever = vectordb.as_retriever(score_threshold=0.7) prompt_template = """Given the following context and a question, generate an answer based on this context only. In the answer try to provide as much text as possible from the source document context without making much changes. If the answer is not found in the context, kindly state "I don't know." Don't try to make up an answer. CONTEXT: {context} QUESTION: {question}""" PROMPT = PromptTemplate( template=prompt_template, input_variables=["context", "question"] ) chain = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, input_key="query", return_source_documents=True, chain_type_kwargs={"prompt": PROMPT}) return chain