|
import numpy as np |
|
import datetime |
|
import random |
|
import math |
|
import os |
|
|
|
from PIL import Image |
|
|
|
|
|
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) |
|
|
|
|
|
def resample_image(im, width, height): |
|
im = Image.fromarray(im) |
|
im = im.resize((int(width), int(height)), resample=LANCZOS) |
|
return np.array(im) |
|
|
|
|
|
def resize_image(im, width, height, resize_mode=1): |
|
""" |
|
Resizes an image with the specified resize_mode, width, and height. |
|
|
|
Args: |
|
resize_mode: The mode to use when resizing the image. |
|
0: Resize the image to the specified width and height. |
|
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. |
|
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. |
|
im: The image to resize. |
|
width: The width to resize the image to. |
|
height: The height to resize the image to. |
|
""" |
|
|
|
im = Image.fromarray(im) |
|
|
|
def resize(im, w, h): |
|
return im.resize((w, h), resample=LANCZOS) |
|
|
|
if resize_mode == 0: |
|
res = resize(im, width, height) |
|
|
|
elif resize_mode == 1: |
|
ratio = width / height |
|
src_ratio = im.width / im.height |
|
|
|
src_w = width if ratio > src_ratio else im.width * height // im.height |
|
src_h = height if ratio <= src_ratio else im.height * width // im.width |
|
|
|
resized = resize(im, src_w, src_h) |
|
res = Image.new("RGB", (width, height)) |
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) |
|
|
|
else: |
|
ratio = width / height |
|
src_ratio = im.width / im.height |
|
|
|
src_w = width if ratio < src_ratio else im.width * height // im.height |
|
src_h = height if ratio >= src_ratio else im.height * width // im.width |
|
|
|
resized = resize(im, src_w, src_h) |
|
res = Image.new("RGB", (width, height)) |
|
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) |
|
|
|
if ratio < src_ratio: |
|
fill_height = height // 2 - src_h // 2 |
|
if fill_height > 0: |
|
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) |
|
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) |
|
elif ratio > src_ratio: |
|
fill_width = width // 2 - src_w // 2 |
|
if fill_width > 0: |
|
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) |
|
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) |
|
|
|
return np.array(res) |
|
|
|
|
|
def get_shape_ceil(h, w): |
|
return math.ceil(((h * w) ** 0.5) / 64.0) * 64.0 |
|
|
|
|
|
def get_image_shape_ceil(im): |
|
H, W = im.shape[:2] |
|
return get_shape_ceil(H, W) |
|
|
|
|
|
def set_image_shape_ceil(im, shape_ceil): |
|
shape_ceil = float(shape_ceil) |
|
|
|
H_origin, W_origin, _ = im.shape |
|
H, W = H_origin, W_origin |
|
|
|
for _ in range(256): |
|
current_shape_ceil = get_shape_ceil(H, W) |
|
if abs(current_shape_ceil - shape_ceil) < 0.1: |
|
break |
|
k = shape_ceil / current_shape_ceil |
|
H = int(round(float(H) * k / 64.0) * 64) |
|
W = int(round(float(W) * k / 64.0) * 64) |
|
|
|
if H == H_origin and W == W_origin: |
|
return im |
|
|
|
return resample_image(im, width=W, height=H) |
|
|
|
|
|
def HWC3(x): |
|
assert x.dtype == np.uint8 |
|
if x.ndim == 2: |
|
x = x[:, :, None] |
|
assert x.ndim == 3 |
|
H, W, C = x.shape |
|
assert C == 1 or C == 3 or C == 4 |
|
if C == 3: |
|
return x |
|
if C == 1: |
|
return np.concatenate([x, x, x], axis=2) |
|
if C == 4: |
|
color = x[:, :, 0:3].astype(np.float32) |
|
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 |
|
y = color * alpha + 255.0 * (1.0 - alpha) |
|
y = y.clip(0, 255).astype(np.uint8) |
|
return y |
|
|
|
|
|
def remove_empty_str(items, default=None): |
|
items = [x for x in items if x != ""] |
|
if len(items) == 0 and default is not None: |
|
return [default] |
|
return items |
|
|
|
|
|
def join_prompts(*args, **kwargs): |
|
prompts = [str(x) for x in args if str(x) != ""] |
|
if len(prompts) == 0: |
|
return "" |
|
if len(prompts) == 1: |
|
return prompts[0] |
|
return ', '.join(prompts) |
|
|
|
|
|
def generate_temp_filename(folder='./outputs/', extension='png'): |
|
current_time = datetime.datetime.now() |
|
date_string = current_time.strftime("%Y-%m-%d") |
|
time_string = current_time.strftime("%Y-%m-%d_%H-%M-%S") |
|
random_number = random.randint(1000, 9999) |
|
filename = f"{time_string}_{random_number}.{extension}" |
|
result = os.path.join(folder, date_string, filename) |
|
return date_string, os.path.abspath(os.path.realpath(result)), filename |
|
|
|
|
|
def get_files_from_folder(folder_path, exensions=None, name_filter=None): |
|
if not os.path.isdir(folder_path): |
|
raise ValueError("Folder path is not a valid directory.") |
|
|
|
filenames = [] |
|
|
|
for root, dirs, files in os.walk(folder_path): |
|
relative_path = os.path.relpath(root, folder_path) |
|
if relative_path == ".": |
|
relative_path = "" |
|
for filename in files: |
|
_, file_extension = os.path.splitext(filename) |
|
if (exensions == None or file_extension.lower() in exensions) and (name_filter == None or name_filter in _): |
|
path = os.path.join(relative_path, filename) |
|
filenames.append(path) |
|
|
|
return sorted(filenames, key=lambda x: -1 if os.sep in x else 1) |
|
|