|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from einops import rearrange |
|
from typing import Optional, Any |
|
|
|
from ldm_patched.modules import model_management |
|
import ldm_patched.modules.ops |
|
ops = ldm_patched.modules.ops.disable_weight_init |
|
|
|
if model_management.xformers_enabled_vae(): |
|
import xformers |
|
import xformers.ops |
|
|
|
def get_timestep_embedding(timesteps, embedding_dim): |
|
""" |
|
This matches the implementation in Denoising Diffusion Probabilistic Models: |
|
From Fairseq. |
|
Build sinusoidal embeddings. |
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
assert len(timesteps.shape) == 1 |
|
|
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) |
|
emb = emb.to(device=timesteps.device) |
|
emb = timesteps.float()[:, None] * emb[None, :] |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) |
|
if embedding_dim % 2 == 1: |
|
emb = torch.nn.functional.pad(emb, (0,1,0,0)) |
|
return emb |
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x*torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels, num_groups=32): |
|
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
try: |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
except: |
|
b, c, h, w = x.shape |
|
out = torch.empty((b, c, h*2, w*2), dtype=x.dtype, layout=x.layout, device=x.device) |
|
split = 8 |
|
l = out.shape[1] // split |
|
for i in range(0, out.shape[1], l): |
|
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=2.0, mode="nearest").to(x.dtype) |
|
del x |
|
x = out |
|
|
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=3, |
|
stride=2, |
|
padding=0) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0,1,0,1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, |
|
dropout, temb_channels=512): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.swish = torch.nn.SiLU(inplace=True) |
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = ops.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if temb_channels > 0: |
|
self.temb_proj = ops.Linear(temb_channels, |
|
out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout, inplace=True) |
|
self.conv2 = ops.Conv2d(out_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = ops.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
else: |
|
self.nin_shortcut = ops.Conv2d(in_channels, |
|
out_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = self.swish(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(self.swish(temb))[:,:,None,None] |
|
|
|
h = self.norm2(h) |
|
h = self.swish(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x+h |
|
|
|
def slice_attention(q, k, v): |
|
r1 = torch.zeros_like(k, device=q.device) |
|
scale = (int(q.shape[-1])**(-0.5)) |
|
|
|
mem_free_total = model_management.get_free_memory(q.device) |
|
|
|
gb = 1024 ** 3 |
|
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() |
|
modifier = 3 if q.element_size() == 2 else 2.5 |
|
mem_required = tensor_size * modifier |
|
steps = 1 |
|
|
|
if mem_required > mem_free_total: |
|
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) |
|
|
|
while True: |
|
try: |
|
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] |
|
for i in range(0, q.shape[1], slice_size): |
|
end = i + slice_size |
|
s1 = torch.bmm(q[:, i:end], k) * scale |
|
|
|
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1) |
|
del s1 |
|
|
|
r1[:, :, i:end] = torch.bmm(v, s2) |
|
del s2 |
|
break |
|
except model_management.OOM_EXCEPTION as e: |
|
model_management.soft_empty_cache(True) |
|
steps *= 2 |
|
if steps > 128: |
|
raise e |
|
print("out of memory error, increasing steps and trying again", steps) |
|
|
|
return r1 |
|
|
|
def normal_attention(q, k, v): |
|
|
|
b,c,h,w = q.shape |
|
|
|
q = q.reshape(b,c,h*w) |
|
q = q.permute(0,2,1) |
|
k = k.reshape(b,c,h*w) |
|
v = v.reshape(b,c,h*w) |
|
|
|
r1 = slice_attention(q, k, v) |
|
h_ = r1.reshape(b,c,h,w) |
|
del r1 |
|
return h_ |
|
|
|
def xformers_attention(q, k, v): |
|
|
|
B, C, H, W = q.shape |
|
q, k, v = map( |
|
lambda t: t.view(B, C, -1).transpose(1, 2).contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
try: |
|
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) |
|
out = out.transpose(1, 2).reshape(B, C, H, W) |
|
except NotImplementedError as e: |
|
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) |
|
return out |
|
|
|
def pytorch_attention(q, k, v): |
|
|
|
B, C, H, W = q.shape |
|
q, k, v = map( |
|
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(), |
|
(q, k, v), |
|
) |
|
|
|
try: |
|
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False) |
|
out = out.transpose(2, 3).reshape(B, C, H, W) |
|
except model_management.OOM_EXCEPTION as e: |
|
print("scaled_dot_product_attention OOMed: switched to slice attention") |
|
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W) |
|
return out |
|
|
|
|
|
class AttnBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
|
|
self.norm = Normalize(in_channels) |
|
self.q = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.k = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.v = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
self.proj_out = ops.Conv2d(in_channels, |
|
in_channels, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0) |
|
|
|
if model_management.xformers_enabled_vae(): |
|
print("Using xformers attention in VAE") |
|
self.optimized_attention = xformers_attention |
|
elif model_management.pytorch_attention_enabled(): |
|
print("Using pytorch attention in VAE") |
|
self.optimized_attention = pytorch_attention |
|
else: |
|
print("Using split attention in VAE") |
|
self.optimized_attention = normal_attention |
|
|
|
def forward(self, x): |
|
h_ = x |
|
h_ = self.norm(h_) |
|
q = self.q(h_) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
h_ = self.optimized_attention(q, k, v) |
|
|
|
h_ = self.proj_out(h_) |
|
|
|
return x+h_ |
|
|
|
|
|
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None): |
|
return AttnBlock(in_channels) |
|
|
|
|
|
class Model(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = self.ch*4 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
self.use_timestep = use_timestep |
|
if self.use_timestep: |
|
|
|
self.temb = nn.Module() |
|
self.temb.dense = nn.ModuleList([ |
|
ops.Linear(self.ch, |
|
self.temb_ch), |
|
ops.Linear(self.temb_ch, |
|
self.temb_ch), |
|
]) |
|
|
|
|
|
self.conv_in = ops.Conv2d(in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch*in_ch_mult[i_level] |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions-1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
skip_in = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
if i_block == self.num_res_blocks: |
|
skip_in = ch*in_ch_mult[i_level] |
|
block.append(ResnetBlock(in_channels=block_in+skip_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = ops.Conv2d(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x, t=None, context=None): |
|
|
|
if context is not None: |
|
|
|
x = torch.cat((x, context), dim=1) |
|
if self.use_timestep: |
|
|
|
assert t is not None |
|
temb = get_timestep_embedding(t, self.ch) |
|
temb = self.temb.dense[0](temb) |
|
temb = nonlinearity(temb) |
|
temb = self.temb.dense[1](temb) |
|
else: |
|
temb = None |
|
|
|
|
|
hs = [self.conv_in(x)] |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](hs[-1], temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
hs.append(h) |
|
if i_level != self.num_resolutions-1: |
|
hs.append(self.down[i_level].downsample(hs[-1])) |
|
|
|
|
|
h = hs[-1] |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block]( |
|
torch.cat([h, hs.pop()], dim=1), temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
def get_last_layer(self): |
|
return self.conv_out.weight |
|
|
|
|
|
class Encoder(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla", |
|
**ignore_kwargs): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
|
|
|
|
self.conv_in = ops.Conv2d(in_channels, |
|
self.ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
self.in_ch_mult = in_ch_mult |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch*in_ch_mult[i_level] |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append(ResnetBlock(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(make_attn(block_in, attn_type=attn_type)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions-1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = make_attn(block_in, attn_type=attn_type) |
|
self.mid.block_2 = ResnetBlock(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = ops.Conv2d(block_in, |
|
2*z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, x): |
|
|
|
temb = None |
|
|
|
h = self.conv_in(x) |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h, temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
if i_level != self.num_resolutions-1: |
|
h = self.down[i_level].downsample(h) |
|
|
|
|
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks, |
|
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, |
|
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False, |
|
conv_out_op=ops.Conv2d, |
|
resnet_op=ResnetBlock, |
|
attn_op=AttnBlock, |
|
**ignorekwargs): |
|
super().__init__() |
|
if use_linear_attn: attn_type = "linear" |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.tanh_out = tanh_out |
|
|
|
|
|
in_ch_mult = (1,)+tuple(ch_mult) |
|
block_in = ch*ch_mult[self.num_resolutions-1] |
|
curr_res = resolution // 2**(self.num_resolutions-1) |
|
self.z_shape = (1,z_channels,curr_res,curr_res) |
|
print("Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape))) |
|
|
|
|
|
self.conv_in = ops.Conv2d(z_channels, |
|
block_in, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
|
|
self.mid = nn.Module() |
|
self.mid.block_1 = resnet_op(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
self.mid.attn_1 = attn_op(block_in) |
|
self.mid.block_2 = resnet_op(in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch*ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks+1): |
|
block.append(resnet_op(in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout)) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(attn_op(block_in)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = conv_out_op(block_in, |
|
out_ch, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1) |
|
|
|
def forward(self, z, **kwargs): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
h = self.mid.block_1(h, temb, **kwargs) |
|
h = self.mid.attn_1(h, **kwargs) |
|
h = self.mid.block_2(h, temb, **kwargs) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks+1): |
|
h = self.up[i_level].block[i_block](h, temb, **kwargs) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h, **kwargs) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h, **kwargs) |
|
if self.tanh_out: |
|
h = torch.tanh(h) |
|
return h |
|
|