|
|
|
""" |
|
Model adapted from advimman's lama project: https://github.com/advimman/lama |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
from typing import List |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torchvision.transforms.functional import InterpolationMode, rotate |
|
|
|
|
|
class LearnableSpatialTransformWrapper(nn.Module): |
|
def __init__(self, impl, pad_coef=0.5, angle_init_range=80, train_angle=True): |
|
super().__init__() |
|
self.impl = impl |
|
self.angle = torch.rand(1) * angle_init_range |
|
if train_angle: |
|
self.angle = nn.Parameter(self.angle, requires_grad=True) |
|
self.pad_coef = pad_coef |
|
|
|
def forward(self, x): |
|
if torch.is_tensor(x): |
|
return self.inverse_transform(self.impl(self.transform(x)), x) |
|
elif isinstance(x, tuple): |
|
x_trans = tuple(self.transform(elem) for elem in x) |
|
y_trans = self.impl(x_trans) |
|
return tuple( |
|
self.inverse_transform(elem, orig_x) for elem, orig_x in zip(y_trans, x) |
|
) |
|
else: |
|
raise ValueError(f"Unexpected input type {type(x)}") |
|
|
|
def transform(self, x): |
|
height, width = x.shape[2:] |
|
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) |
|
x_padded = F.pad(x, [pad_w, pad_w, pad_h, pad_h], mode="reflect") |
|
x_padded_rotated = rotate( |
|
x_padded, self.angle.to(x_padded), InterpolationMode.BILINEAR, fill=0 |
|
) |
|
|
|
return x_padded_rotated |
|
|
|
def inverse_transform(self, y_padded_rotated, orig_x): |
|
height, width = orig_x.shape[2:] |
|
pad_h, pad_w = int(height * self.pad_coef), int(width * self.pad_coef) |
|
|
|
y_padded = rotate( |
|
y_padded_rotated, |
|
-self.angle.to(y_padded_rotated), |
|
InterpolationMode.BILINEAR, |
|
fill=0, |
|
) |
|
y_height, y_width = y_padded.shape[2:] |
|
y = y_padded[:, :, pad_h : y_height - pad_h, pad_w : y_width - pad_w] |
|
return y |
|
|
|
|
|
class SELayer(nn.Module): |
|
def __init__(self, channel, reduction=16): |
|
super(SELayer, self).__init__() |
|
self.avg_pool = nn.AdaptiveAvgPool2d(1) |
|
self.fc = nn.Sequential( |
|
nn.Linear(channel, channel // reduction, bias=False), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(channel // reduction, channel, bias=False), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, x): |
|
b, c, _, _ = x.size() |
|
y = self.avg_pool(x).view(b, c) |
|
y = self.fc(y).view(b, c, 1, 1) |
|
res = x * y.expand_as(x) |
|
return res |
|
|
|
|
|
class FourierUnit(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
groups=1, |
|
spatial_scale_factor=None, |
|
spatial_scale_mode="bilinear", |
|
spectral_pos_encoding=False, |
|
use_se=False, |
|
se_kwargs=None, |
|
ffc3d=False, |
|
fft_norm="ortho", |
|
): |
|
|
|
super(FourierUnit, self).__init__() |
|
self.groups = groups |
|
|
|
self.conv_layer = torch.nn.Conv2d( |
|
in_channels=in_channels * 2 + (2 if spectral_pos_encoding else 0), |
|
out_channels=out_channels * 2, |
|
kernel_size=1, |
|
stride=1, |
|
padding=0, |
|
groups=self.groups, |
|
bias=False, |
|
) |
|
self.bn = torch.nn.BatchNorm2d(out_channels * 2) |
|
self.relu = torch.nn.ReLU(inplace=True) |
|
|
|
|
|
self.use_se = use_se |
|
if use_se: |
|
if se_kwargs is None: |
|
se_kwargs = {} |
|
self.se = SELayer(self.conv_layer.in_channels, **se_kwargs) |
|
|
|
self.spatial_scale_factor = spatial_scale_factor |
|
self.spatial_scale_mode = spatial_scale_mode |
|
self.spectral_pos_encoding = spectral_pos_encoding |
|
self.ffc3d = ffc3d |
|
self.fft_norm = fft_norm |
|
|
|
def forward(self, x): |
|
half_check = False |
|
if x.type() == "torch.cuda.HalfTensor": |
|
|
|
half_check = True |
|
|
|
batch = x.shape[0] |
|
|
|
if self.spatial_scale_factor is not None: |
|
orig_size = x.shape[-2:] |
|
x = F.interpolate( |
|
x, |
|
scale_factor=self.spatial_scale_factor, |
|
mode=self.spatial_scale_mode, |
|
align_corners=False, |
|
) |
|
|
|
|
|
fft_dim = (-3, -2, -1) if self.ffc3d else (-2, -1) |
|
if half_check == True: |
|
ffted = torch.fft.rfftn( |
|
x.float(), dim=fft_dim, norm=self.fft_norm |
|
) |
|
else: |
|
ffted = torch.fft.rfftn(x, dim=fft_dim, norm=self.fft_norm) |
|
|
|
ffted = torch.stack((ffted.real, ffted.imag), dim=-1) |
|
ffted = ffted.permute(0, 1, 4, 2, 3).contiguous() |
|
ffted = ffted.view( |
|
( |
|
batch, |
|
-1, |
|
) |
|
+ ffted.size()[3:] |
|
) |
|
|
|
if self.spectral_pos_encoding: |
|
height, width = ffted.shape[-2:] |
|
coords_vert = ( |
|
torch.linspace(0, 1, height)[None, None, :, None] |
|
.expand(batch, 1, height, width) |
|
.to(ffted) |
|
) |
|
coords_hor = ( |
|
torch.linspace(0, 1, width)[None, None, None, :] |
|
.expand(batch, 1, height, width) |
|
.to(ffted) |
|
) |
|
ffted = torch.cat((coords_vert, coords_hor, ffted), dim=1) |
|
|
|
if self.use_se: |
|
ffted = self.se(ffted) |
|
|
|
if half_check == True: |
|
ffted = self.conv_layer(ffted.half()) |
|
else: |
|
ffted = self.conv_layer( |
|
ffted |
|
) |
|
|
|
ffted = self.relu(self.bn(ffted)) |
|
|
|
ffted = ffted.float() |
|
|
|
ffted = ( |
|
ffted.view( |
|
( |
|
batch, |
|
-1, |
|
2, |
|
) |
|
+ ffted.size()[2:] |
|
) |
|
.permute(0, 1, 3, 4, 2) |
|
.contiguous() |
|
) |
|
|
|
ffted = torch.complex(ffted[..., 0], ffted[..., 1]) |
|
|
|
ifft_shape_slice = x.shape[-3:] if self.ffc3d else x.shape[-2:] |
|
output = torch.fft.irfftn( |
|
ffted, s=ifft_shape_slice, dim=fft_dim, norm=self.fft_norm |
|
) |
|
|
|
if half_check == True: |
|
output = output.half() |
|
|
|
if self.spatial_scale_factor is not None: |
|
output = F.interpolate( |
|
output, |
|
size=orig_size, |
|
mode=self.spatial_scale_mode, |
|
align_corners=False, |
|
) |
|
|
|
return output |
|
|
|
|
|
class SpectralTransform(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
stride=1, |
|
groups=1, |
|
enable_lfu=True, |
|
separable_fu=False, |
|
**fu_kwargs, |
|
): |
|
|
|
super(SpectralTransform, self).__init__() |
|
self.enable_lfu = enable_lfu |
|
if stride == 2: |
|
self.downsample = nn.AvgPool2d(kernel_size=(2, 2), stride=2) |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
self.stride = stride |
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d( |
|
in_channels, out_channels // 2, kernel_size=1, groups=groups, bias=False |
|
), |
|
nn.BatchNorm2d(out_channels // 2), |
|
nn.ReLU(inplace=True), |
|
) |
|
fu_class = FourierUnit |
|
self.fu = fu_class(out_channels // 2, out_channels // 2, groups, **fu_kwargs) |
|
if self.enable_lfu: |
|
self.lfu = fu_class(out_channels // 2, out_channels // 2, groups) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels // 2, out_channels, kernel_size=1, groups=groups, bias=False |
|
) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
x = self.conv1(x) |
|
output = self.fu(x) |
|
|
|
if self.enable_lfu: |
|
_, c, h, _ = x.shape |
|
split_no = 2 |
|
split_s = h // split_no |
|
xs = torch.cat( |
|
torch.split(x[:, : c // 4], split_s, dim=-2), dim=1 |
|
).contiguous() |
|
xs = torch.cat(torch.split(xs, split_s, dim=-1), dim=1).contiguous() |
|
xs = self.lfu(xs) |
|
xs = xs.repeat(1, 1, split_no, split_no).contiguous() |
|
else: |
|
xs = 0 |
|
|
|
output = self.conv2(x + output + xs) |
|
|
|
return output |
|
|
|
|
|
class FFC(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
ratio_gin, |
|
ratio_gout, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
enable_lfu=True, |
|
padding_type="reflect", |
|
gated=False, |
|
**spectral_kwargs, |
|
): |
|
super(FFC, self).__init__() |
|
|
|
assert stride == 1 or stride == 2, "Stride should be 1 or 2." |
|
self.stride = stride |
|
|
|
in_cg = int(in_channels * ratio_gin) |
|
in_cl = in_channels - in_cg |
|
out_cg = int(out_channels * ratio_gout) |
|
out_cl = out_channels - out_cg |
|
|
|
|
|
|
|
self.ratio_gin = ratio_gin |
|
self.ratio_gout = ratio_gout |
|
self.global_in_num = in_cg |
|
|
|
module = nn.Identity if in_cl == 0 or out_cl == 0 else nn.Conv2d |
|
self.convl2l = module( |
|
in_cl, |
|
out_cl, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
bias, |
|
padding_mode=padding_type, |
|
) |
|
module = nn.Identity if in_cl == 0 or out_cg == 0 else nn.Conv2d |
|
self.convl2g = module( |
|
in_cl, |
|
out_cg, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
bias, |
|
padding_mode=padding_type, |
|
) |
|
module = nn.Identity if in_cg == 0 or out_cl == 0 else nn.Conv2d |
|
self.convg2l = module( |
|
in_cg, |
|
out_cl, |
|
kernel_size, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
bias, |
|
padding_mode=padding_type, |
|
) |
|
module = nn.Identity if in_cg == 0 or out_cg == 0 else SpectralTransform |
|
self.convg2g = module( |
|
in_cg, |
|
out_cg, |
|
stride, |
|
1 if groups == 1 else groups // 2, |
|
enable_lfu, |
|
**spectral_kwargs, |
|
) |
|
|
|
self.gated = gated |
|
module = ( |
|
nn.Identity if in_cg == 0 or out_cl == 0 or not self.gated else nn.Conv2d |
|
) |
|
self.gate = module(in_channels, 2, 1) |
|
|
|
def forward(self, x): |
|
x_l, x_g = x if type(x) is tuple else (x, 0) |
|
out_xl, out_xg = 0, 0 |
|
|
|
if self.gated: |
|
total_input_parts = [x_l] |
|
if torch.is_tensor(x_g): |
|
total_input_parts.append(x_g) |
|
total_input = torch.cat(total_input_parts, dim=1) |
|
|
|
gates = torch.sigmoid(self.gate(total_input)) |
|
g2l_gate, l2g_gate = gates.chunk(2, dim=1) |
|
else: |
|
g2l_gate, l2g_gate = 1, 1 |
|
|
|
if self.ratio_gout != 1: |
|
out_xl = self.convl2l(x_l) + self.convg2l(x_g) * g2l_gate |
|
if self.ratio_gout != 0: |
|
out_xg = self.convl2g(x_l) * l2g_gate + self.convg2g(x_g) |
|
|
|
return out_xl, out_xg |
|
|
|
|
|
class FFC_BN_ACT(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
ratio_gin, |
|
ratio_gout, |
|
stride=1, |
|
padding=0, |
|
dilation=1, |
|
groups=1, |
|
bias=False, |
|
norm_layer=nn.BatchNorm2d, |
|
activation_layer=nn.Identity, |
|
padding_type="reflect", |
|
enable_lfu=True, |
|
**kwargs, |
|
): |
|
super(FFC_BN_ACT, self).__init__() |
|
self.ffc = FFC( |
|
in_channels, |
|
out_channels, |
|
kernel_size, |
|
ratio_gin, |
|
ratio_gout, |
|
stride, |
|
padding, |
|
dilation, |
|
groups, |
|
bias, |
|
enable_lfu, |
|
padding_type=padding_type, |
|
**kwargs, |
|
) |
|
lnorm = nn.Identity if ratio_gout == 1 else norm_layer |
|
gnorm = nn.Identity if ratio_gout == 0 else norm_layer |
|
global_channels = int(out_channels * ratio_gout) |
|
self.bn_l = lnorm(out_channels - global_channels) |
|
self.bn_g = gnorm(global_channels) |
|
|
|
lact = nn.Identity if ratio_gout == 1 else activation_layer |
|
gact = nn.Identity if ratio_gout == 0 else activation_layer |
|
self.act_l = lact(inplace=True) |
|
self.act_g = gact(inplace=True) |
|
|
|
def forward(self, x): |
|
x_l, x_g = self.ffc(x) |
|
x_l = self.act_l(self.bn_l(x_l)) |
|
x_g = self.act_g(self.bn_g(x_g)) |
|
return x_l, x_g |
|
|
|
|
|
class FFCResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
padding_type, |
|
norm_layer, |
|
activation_layer=nn.ReLU, |
|
dilation=1, |
|
spatial_transform_kwargs=None, |
|
inline=False, |
|
**conv_kwargs, |
|
): |
|
super().__init__() |
|
self.conv1 = FFC_BN_ACT( |
|
dim, |
|
dim, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
padding_type=padding_type, |
|
**conv_kwargs, |
|
) |
|
self.conv2 = FFC_BN_ACT( |
|
dim, |
|
dim, |
|
kernel_size=3, |
|
padding=dilation, |
|
dilation=dilation, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
padding_type=padding_type, |
|
**conv_kwargs, |
|
) |
|
if spatial_transform_kwargs is not None: |
|
self.conv1 = LearnableSpatialTransformWrapper( |
|
self.conv1, **spatial_transform_kwargs |
|
) |
|
self.conv2 = LearnableSpatialTransformWrapper( |
|
self.conv2, **spatial_transform_kwargs |
|
) |
|
self.inline = inline |
|
|
|
def forward(self, x): |
|
if self.inline: |
|
x_l, x_g = ( |
|
x[:, : -self.conv1.ffc.global_in_num], |
|
x[:, -self.conv1.ffc.global_in_num :], |
|
) |
|
else: |
|
x_l, x_g = x if type(x) is tuple else (x, 0) |
|
|
|
id_l, id_g = x_l, x_g |
|
|
|
x_l, x_g = self.conv1((x_l, x_g)) |
|
x_l, x_g = self.conv2((x_l, x_g)) |
|
|
|
x_l, x_g = id_l + x_l, id_g + x_g |
|
out = x_l, x_g |
|
if self.inline: |
|
out = torch.cat(out, dim=1) |
|
return out |
|
|
|
|
|
class ConcatTupleLayer(nn.Module): |
|
def forward(self, x): |
|
assert isinstance(x, tuple) |
|
x_l, x_g = x |
|
assert torch.is_tensor(x_l) or torch.is_tensor(x_g) |
|
if not torch.is_tensor(x_g): |
|
return x_l |
|
return torch.cat(x, dim=1) |
|
|
|
|
|
class FFCResNetGenerator(nn.Module): |
|
def __init__( |
|
self, |
|
input_nc, |
|
output_nc, |
|
ngf=64, |
|
n_downsampling=3, |
|
n_blocks=18, |
|
norm_layer=nn.BatchNorm2d, |
|
padding_type="reflect", |
|
activation_layer=nn.ReLU, |
|
up_norm_layer=nn.BatchNorm2d, |
|
up_activation=nn.ReLU(True), |
|
init_conv_kwargs={}, |
|
downsample_conv_kwargs={}, |
|
resnet_conv_kwargs={}, |
|
spatial_transform_layers=None, |
|
spatial_transform_kwargs={}, |
|
max_features=1024, |
|
out_ffc=False, |
|
out_ffc_kwargs={}, |
|
): |
|
assert n_blocks >= 0 |
|
super().__init__() |
|
""" |
|
init_conv_kwargs = {'ratio_gin': 0, 'ratio_gout': 0, 'enable_lfu': False} |
|
downsample_conv_kwargs = {'ratio_gin': '${generator.init_conv_kwargs.ratio_gout}', 'ratio_gout': '${generator.downsample_conv_kwargs.ratio_gin}', 'enable_lfu': False} |
|
resnet_conv_kwargs = {'ratio_gin': 0.75, 'ratio_gout': '${generator.resnet_conv_kwargs.ratio_gin}', 'enable_lfu': False} |
|
spatial_transform_kwargs = {} |
|
out_ffc_kwargs = {} |
|
""" |
|
""" |
|
print(input_nc, output_nc, ngf, n_downsampling, n_blocks, norm_layer, |
|
padding_type, activation_layer, |
|
up_norm_layer, up_activation, |
|
spatial_transform_layers, |
|
add_out_act, max_features, out_ffc, file=sys.stderr) |
|
|
|
4 3 64 3 18 <class 'torch.nn.modules.batchnorm.BatchNorm2d'> |
|
reflect <class 'torch.nn.modules.activation.ReLU'> |
|
<class 'torch.nn.modules.batchnorm.BatchNorm2d'> |
|
ReLU(inplace=True) |
|
None sigmoid 1024 False |
|
""" |
|
init_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} |
|
downsample_conv_kwargs = {"ratio_gin": 0, "ratio_gout": 0, "enable_lfu": False} |
|
resnet_conv_kwargs = { |
|
"ratio_gin": 0.75, |
|
"ratio_gout": 0.75, |
|
"enable_lfu": False, |
|
} |
|
spatial_transform_kwargs = {} |
|
out_ffc_kwargs = {} |
|
|
|
model = [ |
|
nn.ReflectionPad2d(3), |
|
FFC_BN_ACT( |
|
input_nc, |
|
ngf, |
|
kernel_size=7, |
|
padding=0, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
**init_conv_kwargs, |
|
), |
|
] |
|
|
|
|
|
for i in range(n_downsampling): |
|
mult = 2**i |
|
if i == n_downsampling - 1: |
|
cur_conv_kwargs = dict(downsample_conv_kwargs) |
|
cur_conv_kwargs["ratio_gout"] = resnet_conv_kwargs.get("ratio_gin", 0) |
|
else: |
|
cur_conv_kwargs = downsample_conv_kwargs |
|
model += [ |
|
FFC_BN_ACT( |
|
min(max_features, ngf * mult), |
|
min(max_features, ngf * mult * 2), |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
norm_layer=norm_layer, |
|
activation_layer=activation_layer, |
|
**cur_conv_kwargs, |
|
) |
|
] |
|
|
|
mult = 2**n_downsampling |
|
feats_num_bottleneck = min(max_features, ngf * mult) |
|
|
|
|
|
for i in range(n_blocks): |
|
cur_resblock = FFCResnetBlock( |
|
feats_num_bottleneck, |
|
padding_type=padding_type, |
|
activation_layer=activation_layer, |
|
norm_layer=norm_layer, |
|
**resnet_conv_kwargs, |
|
) |
|
if spatial_transform_layers is not None and i in spatial_transform_layers: |
|
cur_resblock = LearnableSpatialTransformWrapper( |
|
cur_resblock, **spatial_transform_kwargs |
|
) |
|
model += [cur_resblock] |
|
|
|
model += [ConcatTupleLayer()] |
|
|
|
|
|
for i in range(n_downsampling): |
|
mult = 2 ** (n_downsampling - i) |
|
model += [ |
|
nn.ConvTranspose2d( |
|
min(max_features, ngf * mult), |
|
min(max_features, int(ngf * mult / 2)), |
|
kernel_size=3, |
|
stride=2, |
|
padding=1, |
|
output_padding=1, |
|
), |
|
up_norm_layer(min(max_features, int(ngf * mult / 2))), |
|
up_activation, |
|
] |
|
|
|
if out_ffc: |
|
model += [ |
|
FFCResnetBlock( |
|
ngf, |
|
padding_type=padding_type, |
|
activation_layer=activation_layer, |
|
norm_layer=norm_layer, |
|
inline=True, |
|
**out_ffc_kwargs, |
|
) |
|
] |
|
|
|
model += [ |
|
nn.ReflectionPad2d(3), |
|
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0), |
|
] |
|
model.append(nn.Sigmoid()) |
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, image, mask): |
|
return self.model(torch.cat([image, mask], dim=1)) |
|
|
|
|
|
class LaMa(nn.Module): |
|
def __init__(self, state_dict) -> None: |
|
super(LaMa, self).__init__() |
|
self.model_arch = "LaMa" |
|
self.sub_type = "Inpaint" |
|
self.in_nc = 4 |
|
self.out_nc = 3 |
|
self.scale = 1 |
|
|
|
self.min_size = None |
|
self.pad_mod = 8 |
|
self.pad_to_square = False |
|
|
|
self.model = FFCResNetGenerator(self.in_nc, self.out_nc) |
|
self.state = { |
|
k.replace("generator.model", "model.model"): v |
|
for k, v in state_dict.items() |
|
} |
|
|
|
self.supports_fp16 = False |
|
self.support_bf16 = True |
|
|
|
self.load_state_dict(self.state, strict=False) |
|
|
|
def forward(self, img, mask): |
|
masked_img = img * (1 - mask) |
|
inpainted_mask = mask * self.model.forward(masked_img, mask) |
|
result = inpainted_mask + (1 - mask) * img |
|
return result |
|
|