|
|
|
|
|
|
|
import math |
|
|
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class SRVGGNetCompact(nn.Module): |
|
"""A compact VGG-style network structure for super-resolution. |
|
It is a compact network structure, which performs upsampling in the last layer and no convolution is |
|
conducted on the HR feature space. |
|
Args: |
|
num_in_ch (int): Channel number of inputs. Default: 3. |
|
num_out_ch (int): Channel number of outputs. Default: 3. |
|
num_feat (int): Channel number of intermediate features. Default: 64. |
|
num_conv (int): Number of convolution layers in the body network. Default: 16. |
|
upscale (int): Upsampling factor. Default: 4. |
|
act_type (str): Activation type, options: 'relu', 'prelu', 'leakyrelu'. Default: prelu. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
state_dict, |
|
act_type: str = "prelu", |
|
): |
|
super(SRVGGNetCompact, self).__init__() |
|
self.model_arch = "SRVGG (RealESRGAN)" |
|
self.sub_type = "SR" |
|
|
|
self.act_type = act_type |
|
|
|
self.state = state_dict |
|
|
|
if "params" in self.state: |
|
self.state = self.state["params"] |
|
|
|
self.key_arr = list(self.state.keys()) |
|
|
|
self.in_nc = self.get_in_nc() |
|
self.num_feat = self.get_num_feats() |
|
self.num_conv = self.get_num_conv() |
|
self.out_nc = self.in_nc |
|
self.pixelshuffle_shape = None |
|
self.scale = self.get_scale() |
|
|
|
self.supports_fp16 = True |
|
self.supports_bfp16 = True |
|
self.min_size_restriction = None |
|
|
|
self.body = nn.ModuleList() |
|
|
|
self.body.append(nn.Conv2d(self.in_nc, self.num_feat, 3, 1, 1)) |
|
|
|
if act_type == "relu": |
|
activation = nn.ReLU(inplace=True) |
|
elif act_type == "prelu": |
|
activation = nn.PReLU(num_parameters=self.num_feat) |
|
elif act_type == "leakyrelu": |
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.body.append(activation) |
|
|
|
|
|
for _ in range(self.num_conv): |
|
self.body.append(nn.Conv2d(self.num_feat, self.num_feat, 3, 1, 1)) |
|
|
|
if act_type == "relu": |
|
activation = nn.ReLU(inplace=True) |
|
elif act_type == "prelu": |
|
activation = nn.PReLU(num_parameters=self.num_feat) |
|
elif act_type == "leakyrelu": |
|
activation = nn.LeakyReLU(negative_slope=0.1, inplace=True) |
|
self.body.append(activation) |
|
|
|
|
|
self.body.append(nn.Conv2d(self.num_feat, self.pixelshuffle_shape, 3, 1, 1)) |
|
|
|
self.upsampler = nn.PixelShuffle(self.scale) |
|
|
|
self.load_state_dict(self.state, strict=False) |
|
|
|
def get_num_conv(self) -> int: |
|
return (int(self.key_arr[-1].split(".")[1]) - 2) // 2 |
|
|
|
def get_num_feats(self) -> int: |
|
return self.state[self.key_arr[0]].shape[0] |
|
|
|
def get_in_nc(self) -> int: |
|
return self.state[self.key_arr[0]].shape[1] |
|
|
|
def get_scale(self) -> int: |
|
self.pixelshuffle_shape = self.state[self.key_arr[-1]].shape[0] |
|
|
|
|
|
self.out_nc = self.in_nc |
|
scale = math.sqrt(self.pixelshuffle_shape / self.out_nc) |
|
if scale - int(scale) > 0: |
|
print( |
|
"out_nc is probably different than in_nc, scale calculation might be wrong" |
|
) |
|
scale = int(scale) |
|
return scale |
|
|
|
def forward(self, x): |
|
out = x |
|
for i in range(0, len(self.body)): |
|
out = self.body[i](out) |
|
|
|
out = self.upsampler(out) |
|
|
|
base = F.interpolate(x, scale_factor=self.scale, mode="nearest") |
|
out += base |
|
return out |
|
|