|
|
|
|
|
"""Modified from https://github.com/wzhouxiff/RestoreFormer |
|
""" |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
|
|
class VectorQuantizer(nn.Module): |
|
""" |
|
see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py |
|
____________________________________________ |
|
Discretization bottleneck part of the VQ-VAE. |
|
Inputs: |
|
- n_e : number of embeddings |
|
- e_dim : dimension of embedding |
|
- beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 |
|
_____________________________________________ |
|
""" |
|
|
|
def __init__(self, n_e, e_dim, beta): |
|
super(VectorQuantizer, self).__init__() |
|
self.n_e = n_e |
|
self.e_dim = e_dim |
|
self.beta = beta |
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim) |
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) |
|
|
|
def forward(self, z): |
|
""" |
|
Inputs the output of the encoder network z and maps it to a discrete |
|
one-hot vector that is the index of the closest embedding vector e_j |
|
z (continuous) -> z_q (discrete) |
|
z.shape = (batch, channel, height, width) |
|
quantization pipeline: |
|
1. get encoder input (B,C,H,W) |
|
2. flatten input to (B*H*W,C) |
|
""" |
|
|
|
z = z.permute(0, 2, 3, 1).contiguous() |
|
z_flattened = z.view(-1, self.e_dim) |
|
|
|
|
|
d = ( |
|
torch.sum(z_flattened**2, dim=1, keepdim=True) |
|
+ torch.sum(self.embedding.weight**2, dim=1) |
|
- 2 * torch.matmul(z_flattened, self.embedding.weight.t()) |
|
) |
|
|
|
|
|
|
|
|
|
|
|
min_value, min_encoding_indices = torch.min(d, dim=1) |
|
|
|
min_encoding_indices = min_encoding_indices.unsqueeze(1) |
|
|
|
min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z) |
|
min_encodings.scatter_(1, min_encoding_indices, 1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
z_q = torch.matmul(min_encodings, self.embedding.weight).view(z.shape) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( |
|
(z_q - z.detach()) ** 2 |
|
) |
|
|
|
|
|
z_q = z + (z_q - z).detach() |
|
|
|
|
|
|
|
e_mean = torch.mean(min_encodings, dim=0) |
|
perplexity = torch.exp(-torch.sum(e_mean * torch.log(e_mean + 1e-10))) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices, d) |
|
|
|
def get_codebook_entry(self, indices, shape): |
|
|
|
|
|
min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) |
|
min_encodings.scatter_(1, indices[:, None], 1) |
|
|
|
|
|
z_q = torch.matmul(min_encodings.float(), self.embedding.weight) |
|
|
|
if shape is not None: |
|
z_q = z_q.view(shape) |
|
|
|
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous() |
|
|
|
return z_q |
|
|
|
|
|
|
|
def nonlinearity(x): |
|
|
|
return x * torch.sigmoid(x) |
|
|
|
|
|
def Normalize(in_channels): |
|
return torch.nn.GroupNorm( |
|
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True |
|
) |
|
|
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, x): |
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") |
|
if self.with_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, in_channels, with_conv): |
|
super().__init__() |
|
self.with_conv = with_conv |
|
if self.with_conv: |
|
|
|
self.conv = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0 |
|
) |
|
|
|
def forward(self, x): |
|
if self.with_conv: |
|
pad = (0, 1, 0, 1) |
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) |
|
x = self.conv(x) |
|
else: |
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) |
|
return x |
|
|
|
|
|
class ResnetBlock(nn.Module): |
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout, |
|
temb_channels=512 |
|
): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.conv1 = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if temb_channels > 0: |
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) |
|
self.norm2 = Normalize(out_channels) |
|
self.dropout = torch.nn.Dropout(dropout) |
|
self.conv2 = torch.nn.Conv2d( |
|
out_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
self.conv_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
else: |
|
self.nin_shortcut = torch.nn.Conv2d( |
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
|
|
def forward(self, x, temb): |
|
h = x |
|
h = self.norm1(h) |
|
h = nonlinearity(h) |
|
h = self.conv1(h) |
|
|
|
if temb is not None: |
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] |
|
|
|
h = self.norm2(h) |
|
h = nonlinearity(h) |
|
h = self.dropout(h) |
|
h = self.conv2(h) |
|
|
|
if self.in_channels != self.out_channels: |
|
if self.use_conv_shortcut: |
|
x = self.conv_shortcut(x) |
|
else: |
|
x = self.nin_shortcut(x) |
|
|
|
return x + h |
|
|
|
|
|
class MultiHeadAttnBlock(nn.Module): |
|
def __init__(self, in_channels, head_size=1): |
|
super().__init__() |
|
self.in_channels = in_channels |
|
self.head_size = head_size |
|
self.att_size = in_channels // head_size |
|
assert ( |
|
in_channels % head_size == 0 |
|
), "The size of head should be divided by the number of channels." |
|
|
|
self.norm1 = Normalize(in_channels) |
|
self.norm2 = Normalize(in_channels) |
|
|
|
self.q = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.k = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.v = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.proj_out = torch.nn.Conv2d( |
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0 |
|
) |
|
self.num = 0 |
|
|
|
def forward(self, x, y=None): |
|
h_ = x |
|
h_ = self.norm1(h_) |
|
if y is None: |
|
y = h_ |
|
else: |
|
y = self.norm2(y) |
|
|
|
q = self.q(y) |
|
k = self.k(h_) |
|
v = self.v(h_) |
|
|
|
|
|
b, c, h, w = q.shape |
|
q = q.reshape(b, self.head_size, self.att_size, h * w) |
|
q = q.permute(0, 3, 1, 2) |
|
|
|
k = k.reshape(b, self.head_size, self.att_size, h * w) |
|
k = k.permute(0, 3, 1, 2) |
|
|
|
v = v.reshape(b, self.head_size, self.att_size, h * w) |
|
v = v.permute(0, 3, 1, 2) |
|
|
|
q = q.transpose(1, 2) |
|
v = v.transpose(1, 2) |
|
k = k.transpose(1, 2).transpose(2, 3) |
|
|
|
scale = int(self.att_size) ** (-0.5) |
|
q.mul_(scale) |
|
w_ = torch.matmul(q, k) |
|
w_ = F.softmax(w_, dim=3) |
|
|
|
w_ = w_.matmul(v) |
|
|
|
w_ = w_.transpose(1, 2).contiguous() |
|
w_ = w_.view(b, h, w, -1) |
|
w_ = w_.permute(0, 3, 1, 2) |
|
|
|
w_ = self.proj_out(w_) |
|
|
|
return x + w_ |
|
|
|
|
|
class MultiHeadEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks=2, |
|
attn_resolutions=(16,), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels=3, |
|
resolution=512, |
|
z_channels=256, |
|
double_z=True, |
|
enable_mid=True, |
|
head_size=1, |
|
**ignore_kwargs |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.enable_mid = enable_mid |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
in_channels, self.ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
curr_res = resolution |
|
in_ch_mult = (1,) + tuple(ch_mult) |
|
self.down = nn.ModuleList() |
|
for i_level in range(self.num_resolutions): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_in = ch * in_ch_mult[i_level] |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
down = nn.Module() |
|
down.block = block |
|
down.attn = attn |
|
if i_level != self.num_resolutions - 1: |
|
down.downsample = Downsample(block_in, resamp_with_conv) |
|
curr_res = curr_res // 2 |
|
self.down.append(down) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, |
|
2 * z_channels if double_z else z_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1, |
|
) |
|
|
|
def forward(self, x): |
|
hs = {} |
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(x) |
|
hs["in"] = h |
|
for i_level in range(self.num_resolutions): |
|
for i_block in range(self.num_res_blocks): |
|
h = self.down[i_level].block[i_block](h, temb) |
|
if len(self.down[i_level].attn) > 0: |
|
h = self.down[i_level].attn[i_block](h) |
|
|
|
if i_level != self.num_resolutions - 1: |
|
|
|
hs["block_" + str(i_level)] = h |
|
h = self.down[i_level].downsample(h) |
|
|
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
hs["block_" + str(i_level) + "_atten"] = h |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
hs["mid_atten"] = h |
|
|
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
|
|
hs["out"] = h |
|
|
|
return hs |
|
|
|
|
|
class MultiHeadDecoder(nn.Module): |
|
def __init__( |
|
self, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks=2, |
|
attn_resolutions=(16,), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels=3, |
|
resolution=512, |
|
z_channels=256, |
|
give_pre_end=False, |
|
enable_mid=True, |
|
head_size=1, |
|
**ignorekwargs |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.enable_mid = enable_mid |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
print( |
|
"Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape) |
|
) |
|
) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z): |
|
|
|
self.last_z_shape = z.shape |
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block](h) |
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class MultiHeadDecoderTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
ch, |
|
out_ch, |
|
ch_mult=(1, 2, 4, 8), |
|
num_res_blocks=2, |
|
attn_resolutions=(16,), |
|
dropout=0.0, |
|
resamp_with_conv=True, |
|
in_channels=3, |
|
resolution=512, |
|
z_channels=256, |
|
give_pre_end=False, |
|
enable_mid=True, |
|
head_size=1, |
|
**ignorekwargs |
|
): |
|
super().__init__() |
|
self.ch = ch |
|
self.temb_ch = 0 |
|
self.num_resolutions = len(ch_mult) |
|
self.num_res_blocks = num_res_blocks |
|
self.resolution = resolution |
|
self.in_channels = in_channels |
|
self.give_pre_end = give_pre_end |
|
self.enable_mid = enable_mid |
|
|
|
|
|
block_in = ch * ch_mult[self.num_resolutions - 1] |
|
curr_res = resolution // 2 ** (self.num_resolutions - 1) |
|
self.z_shape = (1, z_channels, curr_res, curr_res) |
|
print( |
|
"Working with z of shape {} = {} dimensions.".format( |
|
self.z_shape, np.prod(self.z_shape) |
|
) |
|
) |
|
|
|
|
|
self.conv_in = torch.nn.Conv2d( |
|
z_channels, block_in, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
|
|
if self.enable_mid: |
|
self.mid = nn.Module() |
|
self.mid.block_1 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
self.mid.attn_1 = MultiHeadAttnBlock(block_in, head_size) |
|
self.mid.block_2 = ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_in, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
|
|
|
|
self.up = nn.ModuleList() |
|
for i_level in reversed(range(self.num_resolutions)): |
|
block = nn.ModuleList() |
|
attn = nn.ModuleList() |
|
block_out = ch * ch_mult[i_level] |
|
for i_block in range(self.num_res_blocks + 1): |
|
block.append( |
|
ResnetBlock( |
|
in_channels=block_in, |
|
out_channels=block_out, |
|
temb_channels=self.temb_ch, |
|
dropout=dropout, |
|
) |
|
) |
|
block_in = block_out |
|
if curr_res in attn_resolutions: |
|
attn.append(MultiHeadAttnBlock(block_in, head_size)) |
|
up = nn.Module() |
|
up.block = block |
|
up.attn = attn |
|
if i_level != 0: |
|
up.upsample = Upsample(block_in, resamp_with_conv) |
|
curr_res = curr_res * 2 |
|
self.up.insert(0, up) |
|
|
|
|
|
self.norm_out = Normalize(block_in) |
|
self.conv_out = torch.nn.Conv2d( |
|
block_in, out_ch, kernel_size=3, stride=1, padding=1 |
|
) |
|
|
|
def forward(self, z, hs): |
|
|
|
|
|
|
|
|
|
temb = None |
|
|
|
|
|
h = self.conv_in(z) |
|
|
|
|
|
if self.enable_mid: |
|
h = self.mid.block_1(h, temb) |
|
h = self.mid.attn_1(h, hs["mid_atten"]) |
|
h = self.mid.block_2(h, temb) |
|
|
|
|
|
for i_level in reversed(range(self.num_resolutions)): |
|
for i_block in range(self.num_res_blocks + 1): |
|
h = self.up[i_level].block[i_block](h, temb) |
|
if len(self.up[i_level].attn) > 0: |
|
h = self.up[i_level].attn[i_block]( |
|
h, hs["block_" + str(i_level) + "_atten"] |
|
) |
|
|
|
if i_level != 0: |
|
h = self.up[i_level].upsample(h) |
|
|
|
|
|
if self.give_pre_end: |
|
return h |
|
|
|
h = self.norm_out(h) |
|
h = nonlinearity(h) |
|
h = self.conv_out(h) |
|
return h |
|
|
|
|
|
class RestoreFormer(nn.Module): |
|
def __init__( |
|
self, |
|
state_dict, |
|
): |
|
super(RestoreFormer, self).__init__() |
|
|
|
n_embed = 1024 |
|
embed_dim = 256 |
|
ch = 64 |
|
out_ch = 3 |
|
ch_mult = (1, 2, 2, 4, 4, 8) |
|
num_res_blocks = 2 |
|
attn_resolutions = (16,) |
|
dropout = 0.0 |
|
in_channels = 3 |
|
resolution = 512 |
|
z_channels = 256 |
|
double_z = False |
|
enable_mid = True |
|
fix_decoder = False |
|
fix_codebook = True |
|
fix_encoder = False |
|
head_size = 8 |
|
|
|
self.model_arch = "RestoreFormer" |
|
self.sub_type = "Face SR" |
|
self.scale = 8 |
|
self.in_nc = 3 |
|
self.out_nc = out_ch |
|
self.state = state_dict |
|
|
|
self.supports_fp16 = False |
|
self.supports_bf16 = True |
|
self.min_size_restriction = 16 |
|
|
|
self.encoder = MultiHeadEncoder( |
|
ch=ch, |
|
out_ch=out_ch, |
|
ch_mult=ch_mult, |
|
num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, |
|
dropout=dropout, |
|
in_channels=in_channels, |
|
resolution=resolution, |
|
z_channels=z_channels, |
|
double_z=double_z, |
|
enable_mid=enable_mid, |
|
head_size=head_size, |
|
) |
|
self.decoder = MultiHeadDecoderTransformer( |
|
ch=ch, |
|
out_ch=out_ch, |
|
ch_mult=ch_mult, |
|
num_res_blocks=num_res_blocks, |
|
attn_resolutions=attn_resolutions, |
|
dropout=dropout, |
|
in_channels=in_channels, |
|
resolution=resolution, |
|
z_channels=z_channels, |
|
enable_mid=enable_mid, |
|
head_size=head_size, |
|
) |
|
|
|
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) |
|
|
|
self.quant_conv = torch.nn.Conv2d(z_channels, embed_dim, 1) |
|
self.post_quant_conv = torch.nn.Conv2d(embed_dim, z_channels, 1) |
|
|
|
if fix_decoder: |
|
for _, param in self.decoder.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.post_quant_conv.named_parameters(): |
|
param.requires_grad = False |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
elif fix_codebook: |
|
for _, param in self.quantize.named_parameters(): |
|
param.requires_grad = False |
|
|
|
if fix_encoder: |
|
for _, param in self.encoder.named_parameters(): |
|
param.requires_grad = False |
|
|
|
self.load_state_dict(state_dict) |
|
|
|
def encode(self, x): |
|
hs = self.encoder(x) |
|
h = self.quant_conv(hs["out"]) |
|
quant, emb_loss, info = self.quantize(h) |
|
return quant, emb_loss, info, hs |
|
|
|
def decode(self, quant, hs): |
|
quant = self.post_quant_conv(quant) |
|
dec = self.decoder(quant, hs) |
|
|
|
return dec |
|
|
|
def forward(self, input, **kwargs): |
|
quant, diff, info, hs = self.encode(input) |
|
dec = self.decode(quant, hs) |
|
|
|
return dec, None |
|
|