fbadine's picture
Update app.py
1c6d9a8 verified
import os
import io
import csv
import gradio as gr
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import tensorflow_io as tfio
import matplotlib.pyplot as plt
from tensorflow import keras
from huggingface_hub import from_pretrained_keras
# Configuration
class_names = [
"Irish",
"Midlands",
"Northern",
"Scottish",
"Southern",
"Welsh",
"Not a speech",
]
# Download Yamnet model from TF Hub
yamnet_model = hub.load("https://tfhub.dev/google/yamnet/1")
# Download dense model from HF Hub
model = from_pretrained_keras(
pretrained_model_name_or_path="fbadine/uk_ireland_accent_classification"
)
# Function that reads a wav audio file and resamples it to 16000 Hz
# This function is copied from the tutorial:
# https://www.tensorflow.org/tutorials/audio/transfer_learning_audio
def load_16k_audio_wav(filename):
# Read file content
file_content = tf.io.read_file(filename)
# Decode audio wave
audio_wav, sample_rate = tf.audio.decode_wav(file_content, desired_channels=1)
audio_wav = tf.squeeze(audio_wav, axis=-1)
sample_rate = tf.cast(sample_rate, dtype=tf.int64)
# Resample to 16k
audio_wav = tfio.audio.resample(audio_wav, rate_in=sample_rate, rate_out=16000)
return audio_wav
# Function thatt takes the audio file produced by gr.Audio(source="microphone") and
# returns a tensor applying the following transformations:
# - Resample to 16000 Hz
# - Normalize
# - Reshape to [1, -1]
def mic_to_tensor(recorded_audio_file):
sample_rate, audio = recorded_audio_file
audio_wav = tf.constant(audio, dtype=tf.float32)
if tf.rank(audio_wav) > 1:
audio_wav = tf.reduce_mean(audio_wav, axis=1)
audio_wav = tfio.audio.resample(audio_wav, rate_in=sample_rate, rate_out=16000)
audio_wav = tf.divide(audio_wav, tf.reduce_max(tf.abs(audio_wav)))
return audio_wav
# Function that takes a tensor and applies the following:
# - Pass it through Yamnet model to get the embeddings which are the input of the dense model
# - Pass the embeddings through the dense model to get the predictions
def tensor_to_predictions(audio_tensor):
# Get audio embeddings & scores.
scores, embeddings, mel_spectrogram = yamnet_model(audio_tensor)
# Predict the output of the accent recognition model with embeddings as input
predictions = model.predict(embeddings)
return predictions, mel_spectrogram
# Function tha is called when the user clicks "Predict" button. It does the following:
# - Calls tensor_to_predictions() to get the predictions
# - Generates the top scoring labels
# - Generates the top scoring plot
def predict_accent(recorded_audio_file, uploaded_audio_file):
# Transform input to tensor
if recorded_audio_file:
audio_tensor = mic_to_tensor(recorded_audio_file)
else:
audio_tensor = load_16k_audio_wav(uploaded_audio_file)
# Model Inference
predictions, mel_spectrogram = tensor_to_predictions(audio_tensor)
# Get the infered class
infered_class = class_names[predictions.mean(axis=0).argmax()]
# Generate Output 1 - Accents
top_scoring_labels_output = {
class_names[i]: float(predictions.mean(axis=0)[i])
for i in range(len(class_names))
}
# Generate Output 2
top_scoring_plot_output = generate_top_scoring_plot(predictions)
return [top_scoring_labels_output, top_scoring_plot_output]
# Clears all inputs and outputs when the user clicks "Clear" button
def clear_inputs_and_outputs():
return [None, None, None, None]
# Function that generates the top scoring plot
# This function is copied from the tutorial and adjusted to our needs
# https://keras.io/examples/audio/uk_ireland_accent_recognition/tinyurl.com/4a8xn7at
def generate_top_scoring_plot(predictions):
# Plot and label the model output scores for the top-scoring classes.
mean_predictions = np.mean(predictions, axis=0)
top_class_indices = np.argsort(mean_predictions)[::-1]
fig = plt.figure(figsize=(10, 2))
plt.imshow(
predictions[:, top_class_indices].T,
aspect="auto",
interpolation="nearest",
cmap="gray_r",
)
# patch_padding = (PATCH_WINDOW_SECONDS / 2) / PATCH_HOP_SECONDS
# values from the model documentation
patch_padding = (0.025 / 2) / 0.01
plt.xlim([-patch_padding - 0.5, predictions.shape[0] + patch_padding - 0.5])
# Label the top_N classes.
yticks = range(0, len(class_names), 1)
plt.yticks(yticks, [class_names[top_class_indices[x]] for x in yticks])
_ = plt.ylim(-0.5 + np.array([len(class_names), 0]))
return fig
# Main function
if __name__ == "__main__":
demo = gr.Blocks()
with demo:
gr.Markdown(
"""
<center><h1>English speaker accent recognition using Transfer Learning</h1></center> \
This space is a demo of an English (precisely UK & Ireland) accent classification model using Keras.<br> \
In this space, you can record your voice or upload a wav file and the model will predict the English accent spoken in the audio<br><br>
"""
)
with gr.Row():
## Input
with gr.Column():
src_input = gr.Audio(sources=["microphone", "upload"])
with gr.Row():
clr_btn = gr.Button(value="Clear", variant="secondary")
prd_btn = gr.Button(value="Predict")
with gr.Column():
lbl_output = gr.Label(label="Top Predictions")
with gr.Group():
gr.Markdown("<center>Prediction per time slot</center>")
plt_output = gr.Plot(
label="Prediction per time slot", show_label=False
)
clr_btn.click(
fn=clear_inputs_and_outputs,
inputs=[],
outputs=[src_input, lbl_output, plt_output],
)
prd_btn.click(
fn=predict_accent,
inputs=[src_input],
outputs=[lbl_output, plt_output],
)
demo.launch(debug=True, share=True)