File size: 13,296 Bytes
73b78df 095edeb 73b78df cf50d78 73b78df 095edeb 73b78df a8477f8 73b78df a8477f8 73b78df 4bc9607 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
import os, argparse
import sys
import gradio as gr
# from scripts.gradio.i2v_test_application import Image2Video
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
import spaces
import os
import time
from omegaconf import OmegaConf
import torch
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
from utils.utils import instantiate_from_config
from huggingface_hub import hf_hub_download
from einops import repeat
import torchvision.transforms as transforms
from pytorch_lightning import seed_everything
from einops import rearrange
from cldm.model import load_state_dict
import cv2
import torch
print("cuda available:", torch.cuda.is_available())
from huggingface_hub import snapshot_download
import os
def download_model():
REPO_ID = 'fbnnb/TC_sketch'
filename_list = ['tc_sketch.pt']
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
if not os.path.exists(tar_dir):
os.makedirs(tar_dir)
for filename in filename_list:
local_file = os.path.join(tar_dir, filename)
if not os.path.exists(local_file):
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
print("downloaded")
def get_latent_z_with_hidden_states(model, videos):
b, c, t, h, w = videos.shape
x = rearrange(videos, 'b c t h w -> (b t) c h w')
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
hidden_states_first_last = []
### use only the first and last hidden states
for hid in hidden_states:
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
hidden_states_first_last.append(hid_new)
z = model.get_first_stage_encoding(encoder_posterior).detach()
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
return z, hidden_states_first_last
def extract_frames(video_path):
# εη»γγ‘γ€γ«γθͺγΏθΎΌγ
cap = cv2.VideoCapture(video_path)
frame_list = []
frame_num = 0
while True:
# γγ¬γΌγ γθͺγΏθΎΌγ
ret, frame = cap.read()
if not ret:
break
# γγ¬γΌγ γγͺγΉγγ«θΏ½ε
frame_list.append(frame)
frame_num += 1
print("load video length:", len(frame_list))
# εη»γγ‘γ€γ«γιγγ
cap.release()
return frame_list
resolution = '576_1024'
resolution = (576, 1024)
download_model()
print("after download model")
result_dir = "./results/"
if not os.path.exists(result_dir):
os.mkdir(result_dir)
#ToonCrafterModel
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
config_file='configs/inference_1024_v1.0.yaml'
config = OmegaConf.load(config_file)
model_config = config.pop("model", OmegaConf.create())
model_config['params']['unet_config']['params']['use_checkpoint']=False
model = instantiate_from_config(model_config)
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
model = load_model_checkpoint(model, ckpt_path)
model.eval()
# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
# cn_model.eval()
# model.control_model = cn_model
# model_list.append(model)
save_fps = 8
print("resolution:", resolution)
print("init done.")
def transpose_if_needed(tensor):
h = tensor.shape[-2]
w = tensor.shape[-1]
if h > w:
tensor = tensor.permute(0, 2, 1)
return tensor
def untranspose(tensor):
ndim = tensor.ndim
return tensor.transpose(ndim-1, ndim-2)
@spaces.GPU(duration=200)
def get_image(image, sketch, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, control_scale=0.6):
print("enter fn")
# control_frames = extract_frames(frame_guides)
print("extract frames")
seed_everything(seed)
transform = transforms.Compose([
transforms.Resize(min(resolution)),
transforms.CenterCrop(resolution),
])
print("before empty cache")
torch.cuda.empty_cache()
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
start = time.time()
gpu_id=0
if steps > 60:
steps = 60
global model
# model = model_list[gpu_id]
model = model.cuda()
batch_size=1
channels = model.model.diffusion_model.out_channels
frames = model.temporal_length
h, w = resolution[0] // 8, resolution[1] // 8
noise_shape = [batch_size, channels, frames, h, w]
# text cond
transposed = False
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16):
text_emb = model.get_learned_conditioning([prompt])
print("before control")
#control cond
# if frame_guides is not None:
# cn_videos = []
# for frame in control_frames:
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# frame = cv2.bitwise_not(frame)
# cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
# #cn_tensor = (cn_tensor / 255. - 0.5) * 2
# cn_tensor = ( cn_tensor/255.0 )
# cn_tensor = transpose_if_needed(cn_tensor)
# cn_tensor_resized = transform(cn_tensor) #3,h,w
# cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
# cn_videos.append(cn_video)
# cn_videos = torch.cat(cn_videos, dim=2)
# if cn_videos.shape[2] > frames:
# idxs = []
# for i in range(frames):
# index = int((i + 0.5) * cn_videos.shape[2] / frames)
# idxs.append(min(index, cn_videos.shape[2] - 1))
# cn_videos = cn_videos[:, :, idxs, :, :]
# print("cn_videos.shape after slicing", cn_videos.shape)
# model_list = []
# for model in model_list:
# model.control_scale = control_scale
# model_list.append(model)
# else:
cn_videos = None
print("image cond")
# img cond
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
input_h, input_w = img_tensor.shape[1:]
img_tensor = (img_tensor / 255. - 0.5) * 2
img_tensor = transpose_if_needed(img_tensor)
image_tensor_resized = transform(img_tensor) #3,h,w
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
print("get latent z")
# z = get_latent_z(model, videos) #bc,1,hw
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
if sketch is not None:
img_tensor2 = torch.from_numpy(sketch).permute(2, 0, 1).float().to(model.device)
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
img_tensor2 = transpose_if_needed(img_tensor2)
image_tensor_resized2 = transform(img_tensor2) #3,h,w
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
videos = torch.cat([videos, videos2], dim=2)
else:
videos = torch.cat([videos, videos], dim=2)
z, hs = get_latent_z_with_hidden_states(model, videos)
img_tensor_repeat = torch.zeros_like(z)
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
print("image embedder")
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
img_emb = model.image_proj_model(cond_images)
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
# print("cn videos:",cn_videos.shape, "img emb:", img_emb.shape)
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
print("before sample loop")
## inference
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
## remove the last frame
# if image2 is None:
batch_samples = batch_samples[:,:,:,:-1,...]
## b,samples,c,t,h,w
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
prompt_str=prompt_str[:40]
if len(prompt_str) == 0:
prompt_str = 'empty_prompt'
global result_dir
global save_fps
if input_h > input_w:
batch_samples = untranspose(batch_samples)
save_videos(batch_samples, result_dir, filenames=[prompt_str], fps=save_fps)
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
model = model.cpu()
saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
print("result saved to:", saved_result_dir)
return saved_result_dir
# @spaces.GPU
i2v_examples_interp_1024 = [
['prompts/1024_interp/frame_000000.jpg', 'prompts/1024_interp/frame_000041.jpg', 'a cat is eating', 50, 7.5, 1.0, 10, 123]
]
def dynamicrafter_demo(result_dir='./tmp/', res=1024):
if res == 1024:
resolution = '576_1024'
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
elif res == 512:
resolution = '320_512'
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
elif res == 256:
resolution = '256_256'
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
else:
raise NotImplementedError(f"Unsupported resolution: {res}")
# image2video = Image2Video(result_dir, resolution=resolution)
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
with gr.Tab(label='ToonCrafter_320x512'):
with gr.Column():
with gr.Row():
with gr.Column():
with gr.Row():
i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
# frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
with gr.Row():
i2v_input_text = gr.Text(label='Prompts')
with gr.Row():
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
with gr.Row():
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
i2v_end_btn = gr.Button("Generate")
with gr.Column():
with gr.Row():
i2v_input_sketch = gr.Image(label="Input End SKetch",elem_id="input_img2")
with gr.Row():
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
gr.Examples(examples=i2v_examples_interp_1024,
inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
outputs=[i2v_output_video],
fn = get_image,
cache_examples=False,
)
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
outputs=[i2v_output_video],
fn = get_image
)
return dynamicrafter_iface
def get_parser():
parser = argparse.ArgumentParser()
return parser
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
result_dir = os.path.join('./', 'results')
dynamicrafter_iface = dynamicrafter_demo(result_dir)
dynamicrafter_iface.queue(max_size=12)
print("launching...")
dynamicrafter_iface.launch(max_threads=1, share=True)
# dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
# dynamicrafter_iface.launch()
# print("launched...") |