fbnnb commited on
Commit
42f25e2
Β·
verified Β·
1 Parent(s): a55e17b

Update gradio_app.py

Browse files
Files changed (1) hide show
  1. gradio_app.py +4 -4
gradio_app.py CHANGED
@@ -142,7 +142,7 @@ def get_image(image1, prompt, image2, dim_steps=50, ddim_eta=1., fs=None, seed=1
142
 
143
  image1 = torch.from_numpy(image1).permute(2, 0, 1).float().cuda()
144
  input_h, input_w = image1.shape[1:]
145
- image1 = (image_tensor1 / 255. - 0.5) * 2
146
 
147
  image2 = torch.from_numpy(image2).permute(2, 0, 1).float().cuda()
148
  input_h, input_w = image2.shape[1:]
@@ -153,15 +153,15 @@ def get_image(image1, prompt, image2, dim_steps=50, ddim_eta=1., fs=None, seed=1
153
  image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w]
154
  # image2 = Image.open(file_list[2*idx+1]).convert('RGB')
155
  image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w]
156
- frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=15)
157
- frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=1)
158
  videos = torch.cat([frame_tensor1, frame_tensor2], dim=1)
159
  # frame_tensor = torch.cat([frame_tensor1, frame_tensor1], dim=1)
160
  # _, filename = os.path.split(file_list[idx*2])
161
 
162
  ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
163
  batch_size = noise_shape[0]
164
- fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device)
165
 
166
  if not text_input:
167
  prompts = [""]*batch_size
 
142
 
143
  image1 = torch.from_numpy(image1).permute(2, 0, 1).float().cuda()
144
  input_h, input_w = image1.shape[1:]
145
+ image1 = (image1 / 255. - 0.5) * 2
146
 
147
  image2 = torch.from_numpy(image2).permute(2, 0, 1).float().cuda()
148
  input_h, input_w = image2.shape[1:]
 
153
  image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w]
154
  # image2 = Image.open(file_list[2*idx+1]).convert('RGB')
155
  image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w]
156
+ frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=8)
157
+ frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=8)
158
  videos = torch.cat([frame_tensor1, frame_tensor2], dim=1)
159
  # frame_tensor = torch.cat([frame_tensor1, frame_tensor1], dim=1)
160
  # _, filename = os.path.split(file_list[idx*2])
161
 
162
  ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model)
163
  batch_size = noise_shape[0]
164
+ fs = torch.tensor([fs], dtype=torch.long, device=model.device)
165
 
166
  if not text_input:
167
  prompts = [""]*batch_size