Update lvdm/models/autoencoder_dualref.py
Browse files- lvdm/models/autoencoder_dualref.py +1177 -1176
lvdm/models/autoencoder_dualref.py
CHANGED
@@ -1,1177 +1,1178 @@
|
|
1 |
-
#### https://github.com/Stability-AI/generative-models
|
2 |
-
from einops import rearrange, repeat
|
3 |
-
import logging
|
4 |
-
from typing import Any, Callable, Optional, Iterable, Union
|
5 |
-
|
6 |
-
import numpy as np
|
7 |
-
import torch
|
8 |
-
import torch.nn as nn
|
9 |
-
from packaging import version
|
10 |
-
logpy = logging.getLogger(__name__)
|
11 |
-
|
12 |
-
try:
|
13 |
-
import xformers
|
14 |
-
import xformers.ops
|
15 |
-
|
16 |
-
XFORMERS_IS_AVAILABLE = True
|
17 |
-
except:
|
18 |
-
XFORMERS_IS_AVAILABLE = False
|
19 |
-
logpy.warning("no module 'xformers'. Processing without...")
|
20 |
-
|
21 |
-
from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention
|
22 |
-
|
23 |
-
|
24 |
-
def nonlinearity(x):
|
25 |
-
# swish
|
26 |
-
return x * torch.sigmoid(x)
|
27 |
-
|
28 |
-
|
29 |
-
def Normalize(in_channels, num_groups=32):
|
30 |
-
return torch.nn.GroupNorm(
|
31 |
-
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
32 |
-
)
|
33 |
-
|
34 |
-
|
35 |
-
class ResnetBlock(nn.Module):
|
36 |
-
def __init__(
|
37 |
-
self,
|
38 |
-
*,
|
39 |
-
in_channels,
|
40 |
-
out_channels=None,
|
41 |
-
conv_shortcut=False,
|
42 |
-
dropout,
|
43 |
-
temb_channels=512,
|
44 |
-
):
|
45 |
-
super().__init__()
|
46 |
-
self.in_channels = in_channels
|
47 |
-
out_channels = in_channels if out_channels is None else out_channels
|
48 |
-
self.out_channels = out_channels
|
49 |
-
self.use_conv_shortcut = conv_shortcut
|
50 |
-
|
51 |
-
self.norm1 = Normalize(in_channels)
|
52 |
-
self.conv1 = torch.nn.Conv2d(
|
53 |
-
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
54 |
-
)
|
55 |
-
if temb_channels > 0:
|
56 |
-
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
57 |
-
self.norm2 = Normalize(out_channels)
|
58 |
-
self.dropout = torch.nn.Dropout(dropout)
|
59 |
-
self.conv2 = torch.nn.Conv2d(
|
60 |
-
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
61 |
-
)
|
62 |
-
if self.in_channels != self.out_channels:
|
63 |
-
if self.use_conv_shortcut:
|
64 |
-
self.conv_shortcut = torch.nn.Conv2d(
|
65 |
-
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
66 |
-
)
|
67 |
-
else:
|
68 |
-
self.nin_shortcut = torch.nn.Conv2d(
|
69 |
-
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
70 |
-
)
|
71 |
-
|
72 |
-
def forward(self, x, temb):
|
73 |
-
h = x
|
74 |
-
h = self.norm1(h)
|
75 |
-
h = nonlinearity(h)
|
76 |
-
h = self.conv1(h)
|
77 |
-
|
78 |
-
if temb is not None:
|
79 |
-
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
80 |
-
|
81 |
-
h = self.norm2(h)
|
82 |
-
h = nonlinearity(h)
|
83 |
-
h = self.dropout(h)
|
84 |
-
h = self.conv2(h)
|
85 |
-
|
86 |
-
if self.in_channels != self.out_channels:
|
87 |
-
if self.use_conv_shortcut:
|
88 |
-
x = self.conv_shortcut(x)
|
89 |
-
else:
|
90 |
-
x = self.nin_shortcut(x)
|
91 |
-
|
92 |
-
return x + h
|
93 |
-
|
94 |
-
|
95 |
-
class LinAttnBlock(LinearAttention):
|
96 |
-
"""to match AttnBlock usage"""
|
97 |
-
|
98 |
-
def __init__(self, in_channels):
|
99 |
-
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
100 |
-
|
101 |
-
|
102 |
-
class AttnBlock(nn.Module):
|
103 |
-
def __init__(self, in_channels):
|
104 |
-
super().__init__()
|
105 |
-
self.in_channels = in_channels
|
106 |
-
|
107 |
-
self.norm = Normalize(in_channels)
|
108 |
-
self.q = torch.nn.Conv2d(
|
109 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
110 |
-
)
|
111 |
-
self.k = torch.nn.Conv2d(
|
112 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
113 |
-
)
|
114 |
-
self.v = torch.nn.Conv2d(
|
115 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
116 |
-
)
|
117 |
-
self.proj_out = torch.nn.Conv2d(
|
118 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
119 |
-
)
|
120 |
-
|
121 |
-
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
122 |
-
h_ = self.norm(h_)
|
123 |
-
q = self.q(h_)
|
124 |
-
k = self.k(h_)
|
125 |
-
v = self.v(h_)
|
126 |
-
|
127 |
-
b, c, h, w = q.shape
|
128 |
-
q, k, v = map(
|
129 |
-
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
|
130 |
-
)
|
131 |
-
h_ = torch.nn.functional.scaled_dot_product_attention(
|
132 |
-
q, k, v
|
133 |
-
) # scale is dim ** -0.5 per default
|
134 |
-
# compute attention
|
135 |
-
|
136 |
-
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
137 |
-
|
138 |
-
def forward(self, x, **kwargs):
|
139 |
-
h_ = x
|
140 |
-
h_ = self.attention(h_)
|
141 |
-
h_ = self.proj_out(h_)
|
142 |
-
return x + h_
|
143 |
-
|
144 |
-
|
145 |
-
class MemoryEfficientAttnBlock(nn.Module):
|
146 |
-
"""
|
147 |
-
Uses xformers efficient implementation,
|
148 |
-
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
149 |
-
Note: this is a single-head self-attention operation
|
150 |
-
"""
|
151 |
-
|
152 |
-
#
|
153 |
-
def __init__(self, in_channels):
|
154 |
-
super().__init__()
|
155 |
-
self.in_channels = in_channels
|
156 |
-
|
157 |
-
self.norm = Normalize(in_channels)
|
158 |
-
self.q = torch.nn.Conv2d(
|
159 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
-
)
|
161 |
-
self.k = torch.nn.Conv2d(
|
162 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
-
)
|
164 |
-
self.v = torch.nn.Conv2d(
|
165 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
-
)
|
167 |
-
self.proj_out = torch.nn.Conv2d(
|
168 |
-
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
169 |
-
)
|
170 |
-
self.attention_op: Optional[Any] = None
|
171 |
-
|
172 |
-
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
173 |
-
h_ = self.norm(h_)
|
174 |
-
q = self.q(h_)
|
175 |
-
k = self.k(h_)
|
176 |
-
v = self.v(h_)
|
177 |
-
|
178 |
-
# compute attention
|
179 |
-
B, C, H, W = q.shape
|
180 |
-
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
181 |
-
|
182 |
-
q, k, v = map(
|
183 |
-
lambda t: t.unsqueeze(3)
|
184 |
-
.reshape(B, t.shape[1], 1, C)
|
185 |
-
.permute(0, 2, 1, 3)
|
186 |
-
.reshape(B * 1, t.shape[1], C)
|
187 |
-
.contiguous(),
|
188 |
-
(q, k, v),
|
189 |
-
)
|
190 |
-
out = xformers.ops.memory_efficient_attention(
|
191 |
-
q, k, v, attn_bias=None, op=self.attention_op
|
192 |
-
)
|
193 |
-
|
194 |
-
out = (
|
195 |
-
out.unsqueeze(0)
|
196 |
-
.reshape(B, 1, out.shape[1], C)
|
197 |
-
.permute(0, 2, 1, 3)
|
198 |
-
.reshape(B, out.shape[1], C)
|
199 |
-
)
|
200 |
-
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
201 |
-
|
202 |
-
def forward(self, x, **kwargs):
|
203 |
-
h_ = x
|
204 |
-
h_ = self.attention(h_)
|
205 |
-
h_ = self.proj_out(h_)
|
206 |
-
return x + h_
|
207 |
-
|
208 |
-
|
209 |
-
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
210 |
-
def forward(self, x, context=None, mask=None, **unused_kwargs):
|
211 |
-
b, c, h, w = x.shape
|
212 |
-
x = rearrange(x, "b c h w -> b (h w) c")
|
213 |
-
out = super().forward(x, context=context, mask=mask)
|
214 |
-
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
215 |
-
return x + out
|
216 |
-
|
217 |
-
|
218 |
-
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
219 |
-
assert attn_type in [
|
220 |
-
"vanilla",
|
221 |
-
"vanilla-xformers",
|
222 |
-
"memory-efficient-cross-attn",
|
223 |
-
"linear",
|
224 |
-
"none",
|
225 |
-
"memory-efficient-cross-attn-fusion",
|
226 |
-
], f"attn_type {attn_type} unknown"
|
227 |
-
if (
|
228 |
-
version.parse(torch.__version__) < version.parse("2.0.0")
|
229 |
-
and attn_type != "none"
|
230 |
-
):
|
231 |
-
assert XFORMERS_IS_AVAILABLE, (
|
232 |
-
f"We do not support vanilla attention in {torch.__version__} anymore, "
|
233 |
-
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
234 |
-
)
|
235 |
-
# attn_type = "vanilla-xformers"
|
236 |
-
logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
237 |
-
if attn_type == "vanilla":
|
238 |
-
assert attn_kwargs is None
|
239 |
-
return AttnBlock(in_channels)
|
240 |
-
elif attn_type == "vanilla-xformers":
|
241 |
-
logpy.info(
|
242 |
-
f"building MemoryEfficientAttnBlock with {in_channels} in_channels..."
|
243 |
-
)
|
244 |
-
return MemoryEfficientAttnBlock(in_channels)
|
245 |
-
elif attn_type == "memory-efficient-cross-attn":
|
246 |
-
attn_kwargs["query_dim"] = in_channels
|
247 |
-
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
248 |
-
elif attn_type == "memory-efficient-cross-attn-fusion":
|
249 |
-
attn_kwargs["query_dim"] = in_channels
|
250 |
-
return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs)
|
251 |
-
elif attn_type == "none":
|
252 |
-
return nn.Identity(in_channels)
|
253 |
-
else:
|
254 |
-
return LinAttnBlock(in_channels)
|
255 |
-
|
256 |
-
class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention):
|
257 |
-
# print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
|
258 |
-
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs):
|
259 |
-
super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs)
|
260 |
-
self.norm = Normalize(query_dim)
|
261 |
-
nn.init.zeros_(self.to_out[0].weight)
|
262 |
-
nn.init.zeros_(self.to_out[0].bias)
|
263 |
-
|
264 |
-
def forward(self, x, context=None, mask=None):
|
265 |
-
if self.training:
|
266 |
-
return checkpoint(self._forward, x, context, mask, use_reentrant=False)
|
267 |
-
else:
|
268 |
-
return self._forward(x, context, mask)
|
269 |
-
|
270 |
-
def _forward(
|
271 |
-
self,
|
272 |
-
x,
|
273 |
-
context=None,
|
274 |
-
mask=None,
|
275 |
-
):
|
276 |
-
bt, c, h, w = x.shape
|
277 |
-
h_ = self.norm(x)
|
278 |
-
h_ = rearrange(h_, "b c h w -> b (h w) c")
|
279 |
-
q = self.to_q(h_)
|
280 |
-
|
281 |
-
|
282 |
-
b, c, l, h, w = context.shape
|
283 |
-
context = rearrange(context, "b c l h w -> (b l) (h w) c")
|
284 |
-
k = self.to_k(context)
|
285 |
-
v = self.to_v(context)
|
286 |
-
k = rearrange(k, "(b l) d c -> b l d c", l=l)
|
287 |
-
k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2)
|
288 |
-
k = rearrange(k, "b l d c -> (b l) d c")
|
289 |
-
|
290 |
-
v = rearrange(v, "(b l) d c -> b l d c", l=l)
|
291 |
-
v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2)
|
292 |
-
v = rearrange(v, "b l d c -> (b l) d c")
|
293 |
-
|
294 |
-
|
295 |
-
b, _, _ = q.shape ##actually bt
|
296 |
-
q, k, v = map(
|
297 |
-
lambda t: t.unsqueeze(3)
|
298 |
-
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
299 |
-
.permute(0, 2, 1, 3)
|
300 |
-
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
301 |
-
.contiguous(),
|
302 |
-
(q, k, v),
|
303 |
-
)
|
304 |
-
|
305 |
-
# actually compute the attention, what we cannot get enough of
|
306 |
-
if version.parse(xformers.__version__) >= version.parse("0.0.21"):
|
307 |
-
# NOTE: workaround for
|
308 |
-
# https://github.com/facebookresearch/xformers/issues/845
|
309 |
-
max_bs = 32768
|
310 |
-
N = q.shape[0]
|
311 |
-
n_batches = math.ceil(N / max_bs)
|
312 |
-
out = list()
|
313 |
-
for i_batch in range(n_batches):
|
314 |
-
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
|
315 |
-
out.append(
|
316 |
-
xformers.ops.memory_efficient_attention(
|
317 |
-
q[batch],
|
318 |
-
k[batch],
|
319 |
-
v[batch],
|
320 |
-
attn_bias=None,
|
321 |
-
op=self.attention_op,
|
322 |
-
)
|
323 |
-
)
|
324 |
-
out = torch.cat(out, 0)
|
325 |
-
else:
|
326 |
-
out = xformers.ops.memory_efficient_attention(
|
327 |
-
q, k, v, attn_bias=None, op=self.attention_op
|
328 |
-
)
|
329 |
-
|
330 |
-
# TODO: Use this directly in the attention operation, as a bias
|
331 |
-
if exists(mask):
|
332 |
-
raise NotImplementedError
|
333 |
-
out = (
|
334 |
-
out.unsqueeze(0)
|
335 |
-
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
336 |
-
.permute(0, 2, 1, 3)
|
337 |
-
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
338 |
-
)
|
339 |
-
out = self.to_out(out)
|
340 |
-
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
|
341 |
-
return x + out
|
342 |
-
|
343 |
-
class Combiner(nn.Module):
|
344 |
-
def __init__(self, ch) -> None:
|
345 |
-
super().__init__()
|
346 |
-
self.conv = nn.Conv2d(ch,ch,1,padding=0)
|
347 |
-
|
348 |
-
nn.init.zeros_(self.conv.weight)
|
349 |
-
nn.init.zeros_(self.conv.bias)
|
350 |
-
|
351 |
-
def forward(self, x, context):
|
352 |
-
if self.training:
|
353 |
-
return checkpoint(self._forward, x, context, use_reentrant=False)
|
354 |
-
else:
|
355 |
-
return self._forward(x, context)
|
356 |
-
|
357 |
-
def _forward(self, x, context):
|
358 |
-
## x: b c h w, context: b c 2 h w
|
359 |
-
b, c, l, h, w = context.shape
|
360 |
-
bt, c, h, w = x.shape
|
361 |
-
context = rearrange(context, "b c l h w -> (b l) c h w")
|
362 |
-
context = self.conv(context)
|
363 |
-
context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
|
364 |
-
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b)
|
365 |
-
x[:,:,0] = x[:,:,0] + context[:,:,0]
|
366 |
-
x[:,:,-1] = x[:,:,-1] + context[:,:,1]
|
367 |
-
x = rearrange(x, "b c t h w -> (b t) c h w")
|
368 |
-
return x
|
369 |
-
|
370 |
-
|
371 |
-
class Decoder(nn.Module):
|
372 |
-
def __init__(
|
373 |
-
self,
|
374 |
-
*,
|
375 |
-
ch,
|
376 |
-
out_ch,
|
377 |
-
ch_mult=(1, 2, 4, 8),
|
378 |
-
num_res_blocks,
|
379 |
-
attn_resolutions,
|
380 |
-
dropout=0.0,
|
381 |
-
resamp_with_conv=True,
|
382 |
-
in_channels,
|
383 |
-
resolution,
|
384 |
-
z_channels,
|
385 |
-
give_pre_end=False,
|
386 |
-
tanh_out=False,
|
387 |
-
use_linear_attn=False,
|
388 |
-
attn_type="vanilla-xformers",
|
389 |
-
attn_level=[2,3],
|
390 |
-
**ignorekwargs,
|
391 |
-
):
|
392 |
-
super().__init__()
|
393 |
-
if use_linear_attn:
|
394 |
-
attn_type = "linear"
|
395 |
-
self.ch = ch
|
396 |
-
self.temb_ch = 0
|
397 |
-
self.num_resolutions = len(ch_mult)
|
398 |
-
self.num_res_blocks = num_res_blocks
|
399 |
-
self.resolution = resolution
|
400 |
-
self.in_channels = in_channels
|
401 |
-
self.give_pre_end = give_pre_end
|
402 |
-
self.tanh_out = tanh_out
|
403 |
-
self.attn_level = attn_level
|
404 |
-
# compute in_ch_mult, block_in and curr_res at lowest res
|
405 |
-
in_ch_mult = (1,) + tuple(ch_mult)
|
406 |
-
block_in = ch * ch_mult[self.num_resolutions - 1]
|
407 |
-
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
408 |
-
self.z_shape = (1, z_channels, curr_res, curr_res)
|
409 |
-
logpy.info(
|
410 |
-
"Working with z of shape {} = {} dimensions.".format(
|
411 |
-
self.z_shape, np.prod(self.z_shape)
|
412 |
-
)
|
413 |
-
)
|
414 |
-
|
415 |
-
make_attn_cls = self._make_attn()
|
416 |
-
make_resblock_cls = self._make_resblock()
|
417 |
-
make_conv_cls = self._make_conv()
|
418 |
-
# z to block_in
|
419 |
-
self.conv_in = torch.nn.Conv2d(
|
420 |
-
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
421 |
-
)
|
422 |
-
|
423 |
-
# middle
|
424 |
-
self.mid = nn.Module()
|
425 |
-
self.mid.block_1 = make_resblock_cls(
|
426 |
-
in_channels=block_in,
|
427 |
-
out_channels=block_in,
|
428 |
-
temb_channels=self.temb_ch,
|
429 |
-
dropout=dropout,
|
430 |
-
)
|
431 |
-
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
|
432 |
-
self.mid.block_2 = make_resblock_cls(
|
433 |
-
in_channels=block_in,
|
434 |
-
out_channels=block_in,
|
435 |
-
temb_channels=self.temb_ch,
|
436 |
-
dropout=dropout,
|
437 |
-
)
|
438 |
-
|
439 |
-
# upsampling
|
440 |
-
self.up = nn.ModuleList()
|
441 |
-
self.attn_refinement = nn.ModuleList()
|
442 |
-
for i_level in reversed(range(self.num_resolutions)):
|
443 |
-
block = nn.ModuleList()
|
444 |
-
attn = nn.ModuleList()
|
445 |
-
block_out = ch * ch_mult[i_level]
|
446 |
-
for i_block in range(self.num_res_blocks + 1):
|
447 |
-
block.append(
|
448 |
-
make_resblock_cls(
|
449 |
-
in_channels=block_in,
|
450 |
-
out_channels=block_out,
|
451 |
-
temb_channels=self.temb_ch,
|
452 |
-
dropout=dropout,
|
453 |
-
)
|
454 |
-
)
|
455 |
-
block_in = block_out
|
456 |
-
if curr_res in attn_resolutions:
|
457 |
-
attn.append(make_attn_cls(block_in, attn_type=attn_type))
|
458 |
-
up = nn.Module()
|
459 |
-
up.block = block
|
460 |
-
up.attn = attn
|
461 |
-
if i_level != 0:
|
462 |
-
up.upsample = Upsample(block_in, resamp_with_conv)
|
463 |
-
curr_res = curr_res * 2
|
464 |
-
self.up.insert(0, up) # prepend to get consistent order
|
465 |
-
|
466 |
-
if i_level in self.attn_level:
|
467 |
-
self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={}))
|
468 |
-
else:
|
469 |
-
self.attn_refinement.insert(0, Combiner(block_in))
|
470 |
-
# end
|
471 |
-
self.norm_out = Normalize(block_in)
|
472 |
-
self.attn_refinement.append(Combiner(block_in))
|
473 |
-
self.conv_out = make_conv_cls(
|
474 |
-
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
475 |
-
)
|
476 |
-
|
477 |
-
def _make_attn(self) -> Callable:
|
478 |
-
return make_attn
|
479 |
-
|
480 |
-
def _make_resblock(self) -> Callable:
|
481 |
-
return ResnetBlock
|
482 |
-
|
483 |
-
def _make_conv(self) -> Callable:
|
484 |
-
return torch.nn.Conv2d
|
485 |
-
|
486 |
-
def get_last_layer(self, **kwargs):
|
487 |
-
return self.conv_out.weight
|
488 |
-
|
489 |
-
def forward(self, z, ref_context=None, **kwargs):
|
490 |
-
## ref_context: b c 2 h w, 2 means starting and ending frame
|
491 |
-
# assert z.shape[1:] == self.z_shape[1:]
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
h = self.mid.
|
502 |
-
h = self.mid.
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
h =
|
521 |
-
|
522 |
-
|
523 |
-
h
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
from
|
534 |
-
|
535 |
-
|
536 |
-
from
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
:param
|
559 |
-
:param
|
560 |
-
:param
|
561 |
-
:param
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
:param
|
566 |
-
:param
|
567 |
-
:param
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
self.
|
589 |
-
self.
|
590 |
-
self.
|
591 |
-
self.
|
592 |
-
self.
|
593 |
-
self.
|
594 |
-
self.
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
self.
|
612 |
-
|
613 |
-
|
614 |
-
self.
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
self.
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
self.
|
626 |
-
self.
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
nn.
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
self.out_channels,
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
:param
|
665 |
-
:
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
h =
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
h =
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
h =
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
"softmax
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
self.
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
self.
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
self.
|
783 |
-
self.
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
assert
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
|
840 |
-
|
841 |
-
|
842 |
-
|
843 |
-
|
844 |
-
|
845 |
-
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
|
853 |
-
|
854 |
-
|
855 |
-
|
856 |
-
|
857 |
-
|
858 |
-
|
859 |
-
|
860 |
-
|
861 |
-
|
862 |
-
|
863 |
-
|
864 |
-
|
865 |
-
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
921 |
-
|
922 |
-
|
923 |
-
|
924 |
-
|
925 |
-
|
926 |
-
|
927 |
-
|
928 |
-
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
|
933 |
-
|
934 |
-
x =
|
935 |
-
|
936 |
-
|
937 |
-
|
938 |
-
|
939 |
-
|
940 |
-
|
941 |
-
|
942 |
-
|
943 |
-
|
944 |
-
|
945 |
-
|
946 |
-
|
947 |
-
|
948 |
-
|
949 |
-
|
950 |
-
|
951 |
-
|
952 |
-
|
953 |
-
|
954 |
-
self.
|
955 |
-
|
956 |
-
torch.nn.
|
957 |
-
torch.nn.
|
958 |
-
|
959 |
-
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
969 |
-
|
970 |
-
|
971 |
-
|
972 |
-
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
num_frames =
|
982 |
-
num_frames =
|
983 |
-
|
984 |
-
|
985 |
-
emb =
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
991 |
-
|
992 |
-
|
993 |
-
x =
|
994 |
-
|
995 |
-
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
|
1005 |
-
|
1006 |
-
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
|
1011 |
-
|
1012 |
-
|
1013 |
-
|
1014 |
-
|
1015 |
-
|
1016 |
-
|
1017 |
-
|
1018 |
-
|
1019 |
-
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
|
1024 |
-
self.
|
1025 |
-
|
1026 |
-
torch.nn.
|
1027 |
-
torch.nn.
|
1028 |
-
|
1029 |
-
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
|
1046 |
-
|
1047 |
-
|
1048 |
-
|
1049 |
-
|
1050 |
-
|
1051 |
-
num_frames =
|
1052 |
-
num_frames =
|
1053 |
-
|
1054 |
-
|
1055 |
-
emb =
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
|
1063 |
-
x =
|
1064 |
-
|
1065 |
-
|
1066 |
-
|
1067 |
-
|
1068 |
-
|
1069 |
-
|
1070 |
-
|
1071 |
-
|
1072 |
-
|
1073 |
-
|
1074 |
-
|
1075 |
-
|
1076 |
-
|
1077 |
-
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
|
1082 |
-
|
1083 |
-
|
1084 |
-
|
1085 |
-
|
1086 |
-
|
1087 |
-
"vanilla
|
1088 |
-
|
1089 |
-
|
1090 |
-
|
1091 |
-
|
1092 |
-
|
1093 |
-
|
1094 |
-
|
1095 |
-
f"
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
|
1103 |
-
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
1107 |
-
|
1108 |
-
|
1109 |
-
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
|
1119 |
-
|
1120 |
-
|
1121 |
-
|
1122 |
-
|
1123 |
-
|
1124 |
-
|
1125 |
-
|
1126 |
-
|
1127 |
-
|
1128 |
-
|
1129 |
-
|
1130 |
-
|
1131 |
-
|
1132 |
-
|
1133 |
-
|
1134 |
-
self.
|
1135 |
-
self.
|
1136 |
-
self.
|
1137 |
-
|
1138 |
-
|
1139 |
-
|
1140 |
-
|
1141 |
-
|
1142 |
-
|
1143 |
-
|
1144 |
-
|
1145 |
-
|
1146 |
-
|
1147 |
-
|
1148 |
-
|
1149 |
-
|
1150 |
-
|
1151 |
-
|
1152 |
-
|
1153 |
-
|
1154 |
-
|
1155 |
-
|
1156 |
-
|
1157 |
-
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
|
1163 |
-
|
1164 |
-
|
1165 |
-
|
1166 |
-
|
1167 |
-
|
1168 |
-
|
1169 |
-
|
1170 |
-
|
1171 |
-
|
1172 |
-
|
1173 |
-
|
1174 |
-
|
1175 |
-
|
1176 |
-
|
|
|
1177 |
return super()._make_resblock()
|
|
|
1 |
+
#### https://github.com/Stability-AI/generative-models
|
2 |
+
from einops import rearrange, repeat
|
3 |
+
import logging
|
4 |
+
from typing import Any, Callable, Optional, Iterable, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from packaging import version
|
10 |
+
logpy = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
try:
|
13 |
+
import xformers
|
14 |
+
import xformers.ops
|
15 |
+
|
16 |
+
XFORMERS_IS_AVAILABLE = True
|
17 |
+
except:
|
18 |
+
XFORMERS_IS_AVAILABLE = False
|
19 |
+
logpy.warning("no module 'xformers'. Processing without...")
|
20 |
+
|
21 |
+
from lvdm.modules.attention_svd import LinearAttention, MemoryEfficientCrossAttention
|
22 |
+
|
23 |
+
|
24 |
+
def nonlinearity(x):
|
25 |
+
# swish
|
26 |
+
return x * torch.sigmoid(x)
|
27 |
+
|
28 |
+
|
29 |
+
def Normalize(in_channels, num_groups=32):
|
30 |
+
return torch.nn.GroupNorm(
|
31 |
+
num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class ResnetBlock(nn.Module):
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
*,
|
39 |
+
in_channels,
|
40 |
+
out_channels=None,
|
41 |
+
conv_shortcut=False,
|
42 |
+
dropout,
|
43 |
+
temb_channels=512,
|
44 |
+
):
|
45 |
+
super().__init__()
|
46 |
+
self.in_channels = in_channels
|
47 |
+
out_channels = in_channels if out_channels is None else out_channels
|
48 |
+
self.out_channels = out_channels
|
49 |
+
self.use_conv_shortcut = conv_shortcut
|
50 |
+
|
51 |
+
self.norm1 = Normalize(in_channels)
|
52 |
+
self.conv1 = torch.nn.Conv2d(
|
53 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
54 |
+
)
|
55 |
+
if temb_channels > 0:
|
56 |
+
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
57 |
+
self.norm2 = Normalize(out_channels)
|
58 |
+
self.dropout = torch.nn.Dropout(dropout)
|
59 |
+
self.conv2 = torch.nn.Conv2d(
|
60 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
61 |
+
)
|
62 |
+
if self.in_channels != self.out_channels:
|
63 |
+
if self.use_conv_shortcut:
|
64 |
+
self.conv_shortcut = torch.nn.Conv2d(
|
65 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
self.nin_shortcut = torch.nn.Conv2d(
|
69 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(self, x, temb):
|
73 |
+
h = x
|
74 |
+
h = self.norm1(h)
|
75 |
+
h = nonlinearity(h)
|
76 |
+
h = self.conv1(h)
|
77 |
+
|
78 |
+
if temb is not None:
|
79 |
+
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
80 |
+
|
81 |
+
h = self.norm2(h)
|
82 |
+
h = nonlinearity(h)
|
83 |
+
h = self.dropout(h)
|
84 |
+
h = self.conv2(h)
|
85 |
+
|
86 |
+
if self.in_channels != self.out_channels:
|
87 |
+
if self.use_conv_shortcut:
|
88 |
+
x = self.conv_shortcut(x)
|
89 |
+
else:
|
90 |
+
x = self.nin_shortcut(x)
|
91 |
+
|
92 |
+
return x + h
|
93 |
+
|
94 |
+
|
95 |
+
class LinAttnBlock(LinearAttention):
|
96 |
+
"""to match AttnBlock usage"""
|
97 |
+
|
98 |
+
def __init__(self, in_channels):
|
99 |
+
super().__init__(dim=in_channels, heads=1, dim_head=in_channels)
|
100 |
+
|
101 |
+
|
102 |
+
class AttnBlock(nn.Module):
|
103 |
+
def __init__(self, in_channels):
|
104 |
+
super().__init__()
|
105 |
+
self.in_channels = in_channels
|
106 |
+
|
107 |
+
self.norm = Normalize(in_channels)
|
108 |
+
self.q = torch.nn.Conv2d(
|
109 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
110 |
+
)
|
111 |
+
self.k = torch.nn.Conv2d(
|
112 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
113 |
+
)
|
114 |
+
self.v = torch.nn.Conv2d(
|
115 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
116 |
+
)
|
117 |
+
self.proj_out = torch.nn.Conv2d(
|
118 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
119 |
+
)
|
120 |
+
|
121 |
+
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
122 |
+
h_ = self.norm(h_)
|
123 |
+
q = self.q(h_)
|
124 |
+
k = self.k(h_)
|
125 |
+
v = self.v(h_)
|
126 |
+
|
127 |
+
b, c, h, w = q.shape
|
128 |
+
q, k, v = map(
|
129 |
+
lambda x: rearrange(x, "b c h w -> b 1 (h w) c").contiguous(), (q, k, v)
|
130 |
+
)
|
131 |
+
h_ = torch.nn.functional.scaled_dot_product_attention(
|
132 |
+
q, k, v
|
133 |
+
) # scale is dim ** -0.5 per default
|
134 |
+
# compute attention
|
135 |
+
|
136 |
+
return rearrange(h_, "b 1 (h w) c -> b c h w", h=h, w=w, c=c, b=b)
|
137 |
+
|
138 |
+
def forward(self, x, **kwargs):
|
139 |
+
h_ = x
|
140 |
+
h_ = self.attention(h_)
|
141 |
+
h_ = self.proj_out(h_)
|
142 |
+
return x + h_
|
143 |
+
|
144 |
+
|
145 |
+
class MemoryEfficientAttnBlock(nn.Module):
|
146 |
+
"""
|
147 |
+
Uses xformers efficient implementation,
|
148 |
+
see https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
|
149 |
+
Note: this is a single-head self-attention operation
|
150 |
+
"""
|
151 |
+
|
152 |
+
#
|
153 |
+
def __init__(self, in_channels):
|
154 |
+
super().__init__()
|
155 |
+
self.in_channels = in_channels
|
156 |
+
|
157 |
+
self.norm = Normalize(in_channels)
|
158 |
+
self.q = torch.nn.Conv2d(
|
159 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
160 |
+
)
|
161 |
+
self.k = torch.nn.Conv2d(
|
162 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
163 |
+
)
|
164 |
+
self.v = torch.nn.Conv2d(
|
165 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
166 |
+
)
|
167 |
+
self.proj_out = torch.nn.Conv2d(
|
168 |
+
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
169 |
+
)
|
170 |
+
self.attention_op: Optional[Any] = None
|
171 |
+
|
172 |
+
def attention(self, h_: torch.Tensor) -> torch.Tensor:
|
173 |
+
h_ = self.norm(h_)
|
174 |
+
q = self.q(h_)
|
175 |
+
k = self.k(h_)
|
176 |
+
v = self.v(h_)
|
177 |
+
|
178 |
+
# compute attention
|
179 |
+
B, C, H, W = q.shape
|
180 |
+
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
|
181 |
+
|
182 |
+
q, k, v = map(
|
183 |
+
lambda t: t.unsqueeze(3)
|
184 |
+
.reshape(B, t.shape[1], 1, C)
|
185 |
+
.permute(0, 2, 1, 3)
|
186 |
+
.reshape(B * 1, t.shape[1], C)
|
187 |
+
.contiguous(),
|
188 |
+
(q, k, v),
|
189 |
+
)
|
190 |
+
out = xformers.ops.memory_efficient_attention(
|
191 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
192 |
+
)
|
193 |
+
|
194 |
+
out = (
|
195 |
+
out.unsqueeze(0)
|
196 |
+
.reshape(B, 1, out.shape[1], C)
|
197 |
+
.permute(0, 2, 1, 3)
|
198 |
+
.reshape(B, out.shape[1], C)
|
199 |
+
)
|
200 |
+
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
|
201 |
+
|
202 |
+
def forward(self, x, **kwargs):
|
203 |
+
h_ = x
|
204 |
+
h_ = self.attention(h_)
|
205 |
+
h_ = self.proj_out(h_)
|
206 |
+
return x + h_
|
207 |
+
|
208 |
+
|
209 |
+
class MemoryEfficientCrossAttentionWrapper(MemoryEfficientCrossAttention):
|
210 |
+
def forward(self, x, context=None, mask=None, **unused_kwargs):
|
211 |
+
b, c, h, w = x.shape
|
212 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
213 |
+
out = super().forward(x, context=context, mask=mask)
|
214 |
+
out = rearrange(out, "b (h w) c -> b c h w", h=h, w=w, c=c)
|
215 |
+
return x + out
|
216 |
+
|
217 |
+
|
218 |
+
def make_attn(in_channels, attn_type="vanilla", attn_kwargs=None):
|
219 |
+
assert attn_type in [
|
220 |
+
"vanilla",
|
221 |
+
"vanilla-xformers",
|
222 |
+
"memory-efficient-cross-attn",
|
223 |
+
"linear",
|
224 |
+
"none",
|
225 |
+
"memory-efficient-cross-attn-fusion",
|
226 |
+
], f"attn_type {attn_type} unknown"
|
227 |
+
if (
|
228 |
+
version.parse(torch.__version__) < version.parse("2.0.0")
|
229 |
+
and attn_type != "none"
|
230 |
+
):
|
231 |
+
assert XFORMERS_IS_AVAILABLE, (
|
232 |
+
f"We do not support vanilla attention in {torch.__version__} anymore, "
|
233 |
+
f"as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'"
|
234 |
+
)
|
235 |
+
# attn_type = "vanilla-xformers"
|
236 |
+
logpy.info(f"making attention of type '{attn_type}' with {in_channels} in_channels")
|
237 |
+
if attn_type == "vanilla":
|
238 |
+
assert attn_kwargs is None
|
239 |
+
return AttnBlock(in_channels)
|
240 |
+
elif attn_type == "vanilla-xformers":
|
241 |
+
logpy.info(
|
242 |
+
f"building MemoryEfficientAttnBlock with {in_channels} in_channels..."
|
243 |
+
)
|
244 |
+
return MemoryEfficientAttnBlock(in_channels)
|
245 |
+
elif attn_type == "memory-efficient-cross-attn":
|
246 |
+
attn_kwargs["query_dim"] = in_channels
|
247 |
+
return MemoryEfficientCrossAttentionWrapper(**attn_kwargs)
|
248 |
+
elif attn_type == "memory-efficient-cross-attn-fusion":
|
249 |
+
attn_kwargs["query_dim"] = in_channels
|
250 |
+
return MemoryEfficientCrossAttentionWrapperFusion(**attn_kwargs)
|
251 |
+
elif attn_type == "none":
|
252 |
+
return nn.Identity(in_channels)
|
253 |
+
else:
|
254 |
+
return LinAttnBlock(in_channels)
|
255 |
+
|
256 |
+
class MemoryEfficientCrossAttentionWrapperFusion(MemoryEfficientCrossAttention):
|
257 |
+
# print('x.shape: ',x.shape, 'context.shape: ',context.shape) ##torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
|
258 |
+
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0, **kwargs):
|
259 |
+
super().__init__(query_dim, context_dim, heads, dim_head, dropout, **kwargs)
|
260 |
+
self.norm = Normalize(query_dim)
|
261 |
+
nn.init.zeros_(self.to_out[0].weight)
|
262 |
+
nn.init.zeros_(self.to_out[0].bias)
|
263 |
+
|
264 |
+
def forward(self, x, context=None, mask=None):
|
265 |
+
if self.training:
|
266 |
+
return checkpoint(self._forward, x, context, mask, use_reentrant=False)
|
267 |
+
else:
|
268 |
+
return self._forward(x, context, mask)
|
269 |
+
|
270 |
+
def _forward(
|
271 |
+
self,
|
272 |
+
x,
|
273 |
+
context=None,
|
274 |
+
mask=None,
|
275 |
+
):
|
276 |
+
bt, c, h, w = x.shape
|
277 |
+
h_ = self.norm(x)
|
278 |
+
h_ = rearrange(h_, "b c h w -> b (h w) c")
|
279 |
+
q = self.to_q(h_)
|
280 |
+
|
281 |
+
|
282 |
+
b, c, l, h, w = context.shape
|
283 |
+
context = rearrange(context, "b c l h w -> (b l) (h w) c")
|
284 |
+
k = self.to_k(context)
|
285 |
+
v = self.to_v(context)
|
286 |
+
k = rearrange(k, "(b l) d c -> b l d c", l=l)
|
287 |
+
k = torch.cat([k[:, [0] * (bt//b)], k[:, [1]*(bt//b)]], dim=2)
|
288 |
+
k = rearrange(k, "b l d c -> (b l) d c")
|
289 |
+
|
290 |
+
v = rearrange(v, "(b l) d c -> b l d c", l=l)
|
291 |
+
v = torch.cat([v[:, [0] * (bt//b)], v[:, [1]*(bt//b)]], dim=2)
|
292 |
+
v = rearrange(v, "b l d c -> (b l) d c")
|
293 |
+
|
294 |
+
|
295 |
+
b, _, _ = q.shape ##actually bt
|
296 |
+
q, k, v = map(
|
297 |
+
lambda t: t.unsqueeze(3)
|
298 |
+
.reshape(b, t.shape[1], self.heads, self.dim_head)
|
299 |
+
.permute(0, 2, 1, 3)
|
300 |
+
.reshape(b * self.heads, t.shape[1], self.dim_head)
|
301 |
+
.contiguous(),
|
302 |
+
(q, k, v),
|
303 |
+
)
|
304 |
+
|
305 |
+
# actually compute the attention, what we cannot get enough of
|
306 |
+
if version.parse(xformers.__version__) >= version.parse("0.0.21"):
|
307 |
+
# NOTE: workaround for
|
308 |
+
# https://github.com/facebookresearch/xformers/issues/845
|
309 |
+
max_bs = 32768
|
310 |
+
N = q.shape[0]
|
311 |
+
n_batches = math.ceil(N / max_bs)
|
312 |
+
out = list()
|
313 |
+
for i_batch in range(n_batches):
|
314 |
+
batch = slice(i_batch * max_bs, (i_batch + 1) * max_bs)
|
315 |
+
out.append(
|
316 |
+
xformers.ops.memory_efficient_attention(
|
317 |
+
q[batch],
|
318 |
+
k[batch],
|
319 |
+
v[batch],
|
320 |
+
attn_bias=None,
|
321 |
+
op=self.attention_op,
|
322 |
+
)
|
323 |
+
)
|
324 |
+
out = torch.cat(out, 0)
|
325 |
+
else:
|
326 |
+
out = xformers.ops.memory_efficient_attention(
|
327 |
+
q, k, v, attn_bias=None, op=self.attention_op
|
328 |
+
)
|
329 |
+
|
330 |
+
# TODO: Use this directly in the attention operation, as a bias
|
331 |
+
if exists(mask):
|
332 |
+
raise NotImplementedError
|
333 |
+
out = (
|
334 |
+
out.unsqueeze(0)
|
335 |
+
.reshape(b, self.heads, out.shape[1], self.dim_head)
|
336 |
+
.permute(0, 2, 1, 3)
|
337 |
+
.reshape(b, out.shape[1], self.heads * self.dim_head)
|
338 |
+
)
|
339 |
+
out = self.to_out(out)
|
340 |
+
out = rearrange(out, "bt (h w) c -> bt c h w", h=h, w=w, c=c)
|
341 |
+
return x + out
|
342 |
+
|
343 |
+
class Combiner(nn.Module):
|
344 |
+
def __init__(self, ch) -> None:
|
345 |
+
super().__init__()
|
346 |
+
self.conv = nn.Conv2d(ch,ch,1,padding=0)
|
347 |
+
|
348 |
+
nn.init.zeros_(self.conv.weight)
|
349 |
+
nn.init.zeros_(self.conv.bias)
|
350 |
+
|
351 |
+
def forward(self, x, context):
|
352 |
+
if self.training:
|
353 |
+
return checkpoint(self._forward, x, context, use_reentrant=False)
|
354 |
+
else:
|
355 |
+
return self._forward(x, context)
|
356 |
+
|
357 |
+
def _forward(self, x, context):
|
358 |
+
## x: b c h w, context: b c 2 h w
|
359 |
+
b, c, l, h, w = context.shape
|
360 |
+
bt, c, h, w = x.shape
|
361 |
+
context = rearrange(context, "b c l h w -> (b l) c h w")
|
362 |
+
context = self.conv(context)
|
363 |
+
context = rearrange(context, "(b l) c h w -> b c l h w", l=l)
|
364 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=bt//b)
|
365 |
+
x[:,:,0] = x[:,:,0] + context[:,:,0]
|
366 |
+
x[:,:,-1] = x[:,:,-1] + context[:,:,1]
|
367 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
368 |
+
return x
|
369 |
+
|
370 |
+
|
371 |
+
class Decoder(nn.Module):
|
372 |
+
def __init__(
|
373 |
+
self,
|
374 |
+
*,
|
375 |
+
ch,
|
376 |
+
out_ch,
|
377 |
+
ch_mult=(1, 2, 4, 8),
|
378 |
+
num_res_blocks,
|
379 |
+
attn_resolutions,
|
380 |
+
dropout=0.0,
|
381 |
+
resamp_with_conv=True,
|
382 |
+
in_channels,
|
383 |
+
resolution,
|
384 |
+
z_channels,
|
385 |
+
give_pre_end=False,
|
386 |
+
tanh_out=False,
|
387 |
+
use_linear_attn=False,
|
388 |
+
attn_type="vanilla-xformers",
|
389 |
+
attn_level=[2,3],
|
390 |
+
**ignorekwargs,
|
391 |
+
):
|
392 |
+
super().__init__()
|
393 |
+
if use_linear_attn:
|
394 |
+
attn_type = "linear"
|
395 |
+
self.ch = ch
|
396 |
+
self.temb_ch = 0
|
397 |
+
self.num_resolutions = len(ch_mult)
|
398 |
+
self.num_res_blocks = num_res_blocks
|
399 |
+
self.resolution = resolution
|
400 |
+
self.in_channels = in_channels
|
401 |
+
self.give_pre_end = give_pre_end
|
402 |
+
self.tanh_out = tanh_out
|
403 |
+
self.attn_level = attn_level
|
404 |
+
# compute in_ch_mult, block_in and curr_res at lowest res
|
405 |
+
in_ch_mult = (1,) + tuple(ch_mult)
|
406 |
+
block_in = ch * ch_mult[self.num_resolutions - 1]
|
407 |
+
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
408 |
+
self.z_shape = (1, z_channels, curr_res, curr_res)
|
409 |
+
logpy.info(
|
410 |
+
"Working with z of shape {} = {} dimensions.".format(
|
411 |
+
self.z_shape, np.prod(self.z_shape)
|
412 |
+
)
|
413 |
+
)
|
414 |
+
|
415 |
+
make_attn_cls = self._make_attn()
|
416 |
+
make_resblock_cls = self._make_resblock()
|
417 |
+
make_conv_cls = self._make_conv()
|
418 |
+
# z to block_in
|
419 |
+
self.conv_in = torch.nn.Conv2d(
|
420 |
+
z_channels, block_in, kernel_size=3, stride=1, padding=1
|
421 |
+
)
|
422 |
+
|
423 |
+
# middle
|
424 |
+
self.mid = nn.Module()
|
425 |
+
self.mid.block_1 = make_resblock_cls(
|
426 |
+
in_channels=block_in,
|
427 |
+
out_channels=block_in,
|
428 |
+
temb_channels=self.temb_ch,
|
429 |
+
dropout=dropout,
|
430 |
+
)
|
431 |
+
self.mid.attn_1 = make_attn_cls(block_in, attn_type=attn_type)
|
432 |
+
self.mid.block_2 = make_resblock_cls(
|
433 |
+
in_channels=block_in,
|
434 |
+
out_channels=block_in,
|
435 |
+
temb_channels=self.temb_ch,
|
436 |
+
dropout=dropout,
|
437 |
+
)
|
438 |
+
|
439 |
+
# upsampling
|
440 |
+
self.up = nn.ModuleList()
|
441 |
+
self.attn_refinement = nn.ModuleList()
|
442 |
+
for i_level in reversed(range(self.num_resolutions)):
|
443 |
+
block = nn.ModuleList()
|
444 |
+
attn = nn.ModuleList()
|
445 |
+
block_out = ch * ch_mult[i_level]
|
446 |
+
for i_block in range(self.num_res_blocks + 1):
|
447 |
+
block.append(
|
448 |
+
make_resblock_cls(
|
449 |
+
in_channels=block_in,
|
450 |
+
out_channels=block_out,
|
451 |
+
temb_channels=self.temb_ch,
|
452 |
+
dropout=dropout,
|
453 |
+
)
|
454 |
+
)
|
455 |
+
block_in = block_out
|
456 |
+
if curr_res in attn_resolutions:
|
457 |
+
attn.append(make_attn_cls(block_in, attn_type=attn_type))
|
458 |
+
up = nn.Module()
|
459 |
+
up.block = block
|
460 |
+
up.attn = attn
|
461 |
+
if i_level != 0:
|
462 |
+
up.upsample = Upsample(block_in, resamp_with_conv)
|
463 |
+
curr_res = curr_res * 2
|
464 |
+
self.up.insert(0, up) # prepend to get consistent order
|
465 |
+
|
466 |
+
if i_level in self.attn_level:
|
467 |
+
self.attn_refinement.insert(0, make_attn_cls(block_in, attn_type='memory-efficient-cross-attn-fusion', attn_kwargs={}))
|
468 |
+
else:
|
469 |
+
self.attn_refinement.insert(0, Combiner(block_in))
|
470 |
+
# end
|
471 |
+
self.norm_out = Normalize(block_in)
|
472 |
+
self.attn_refinement.append(Combiner(block_in))
|
473 |
+
self.conv_out = make_conv_cls(
|
474 |
+
block_in, out_ch, kernel_size=3, stride=1, padding=1
|
475 |
+
)
|
476 |
+
|
477 |
+
def _make_attn(self) -> Callable:
|
478 |
+
return make_attn
|
479 |
+
|
480 |
+
def _make_resblock(self) -> Callable:
|
481 |
+
return ResnetBlock
|
482 |
+
|
483 |
+
def _make_conv(self) -> Callable:
|
484 |
+
return torch.nn.Conv2d
|
485 |
+
|
486 |
+
def get_last_layer(self, **kwargs):
|
487 |
+
return self.conv_out.weight
|
488 |
+
|
489 |
+
def forward(self, z, ref_context=None, **kwargs):
|
490 |
+
## ref_context: b c 2 h w, 2 means starting and ending frame
|
491 |
+
# assert z.shape[1:] == self.z_shape[1:]
|
492 |
+
ref_context = None
|
493 |
+
self.last_z_shape = z.shape
|
494 |
+
# timestep embedding
|
495 |
+
temb = None
|
496 |
+
|
497 |
+
# z to block_in
|
498 |
+
h = self.conv_in(z)
|
499 |
+
|
500 |
+
# middle
|
501 |
+
h = self.mid.block_1(h, temb, **kwargs)
|
502 |
+
h = self.mid.attn_1(h, **kwargs)
|
503 |
+
h = self.mid.block_2(h, temb, **kwargs)
|
504 |
+
|
505 |
+
# upsampling
|
506 |
+
for i_level in reversed(range(self.num_resolutions)):
|
507 |
+
for i_block in range(self.num_res_blocks + 1):
|
508 |
+
h = self.up[i_level].block[i_block](h, temb, **kwargs)
|
509 |
+
if len(self.up[i_level].attn) > 0:
|
510 |
+
h = self.up[i_level].attn[i_block](h, **kwargs)
|
511 |
+
if ref_context:
|
512 |
+
h = self.attn_refinement[i_level](x=h, context=ref_context[i_level])
|
513 |
+
if i_level != 0:
|
514 |
+
h = self.up[i_level].upsample(h)
|
515 |
+
|
516 |
+
# end
|
517 |
+
if self.give_pre_end:
|
518 |
+
return h
|
519 |
+
|
520 |
+
h = self.norm_out(h)
|
521 |
+
h = nonlinearity(h)
|
522 |
+
if ref_context:
|
523 |
+
# print(h.shape, ref_context[i_level].shape) #torch.Size([8, 128, 256, 256]) torch.Size([1, 128, 2, 256, 256])
|
524 |
+
h = self.attn_refinement[-1](x=h, context=ref_context[-1])
|
525 |
+
h = self.conv_out(h, **kwargs)
|
526 |
+
if self.tanh_out:
|
527 |
+
h = torch.tanh(h)
|
528 |
+
return h
|
529 |
+
|
530 |
+
#####
|
531 |
+
|
532 |
+
|
533 |
+
from abc import abstractmethod
|
534 |
+
from lvdm.models.utils_diffusion import timestep_embedding
|
535 |
+
|
536 |
+
from torch.utils.checkpoint import checkpoint
|
537 |
+
from lvdm.basics import (
|
538 |
+
zero_module,
|
539 |
+
conv_nd,
|
540 |
+
linear,
|
541 |
+
normalization,
|
542 |
+
)
|
543 |
+
from lvdm.modules.networks.openaimodel3d import Upsample, Downsample
|
544 |
+
class TimestepBlock(nn.Module):
|
545 |
+
"""
|
546 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
547 |
+
"""
|
548 |
+
|
549 |
+
@abstractmethod
|
550 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor):
|
551 |
+
"""
|
552 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
553 |
+
"""
|
554 |
+
|
555 |
+
class ResBlock(TimestepBlock):
|
556 |
+
"""
|
557 |
+
A residual block that can optionally change the number of channels.
|
558 |
+
:param channels: the number of input channels.
|
559 |
+
:param emb_channels: the number of timestep embedding channels.
|
560 |
+
:param dropout: the rate of dropout.
|
561 |
+
:param out_channels: if specified, the number of out channels.
|
562 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
563 |
+
convolution instead of a smaller 1x1 convolution to change the
|
564 |
+
channels in the skip connection.
|
565 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
566 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
567 |
+
:param up: if True, use this block for upsampling.
|
568 |
+
:param down: if True, use this block for downsampling.
|
569 |
+
"""
|
570 |
+
|
571 |
+
def __init__(
|
572 |
+
self,
|
573 |
+
channels: int,
|
574 |
+
emb_channels: int,
|
575 |
+
dropout: float,
|
576 |
+
out_channels: Optional[int] = None,
|
577 |
+
use_conv: bool = False,
|
578 |
+
use_scale_shift_norm: bool = False,
|
579 |
+
dims: int = 2,
|
580 |
+
use_checkpoint: bool = False,
|
581 |
+
up: bool = False,
|
582 |
+
down: bool = False,
|
583 |
+
kernel_size: int = 3,
|
584 |
+
exchange_temb_dims: bool = False,
|
585 |
+
skip_t_emb: bool = False,
|
586 |
+
):
|
587 |
+
super().__init__()
|
588 |
+
self.channels = channels
|
589 |
+
self.emb_channels = emb_channels
|
590 |
+
self.dropout = dropout
|
591 |
+
self.out_channels = out_channels or channels
|
592 |
+
self.use_conv = use_conv
|
593 |
+
self.use_checkpoint = use_checkpoint
|
594 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
595 |
+
self.exchange_temb_dims = exchange_temb_dims
|
596 |
+
|
597 |
+
if isinstance(kernel_size, Iterable):
|
598 |
+
padding = [k // 2 for k in kernel_size]
|
599 |
+
else:
|
600 |
+
padding = kernel_size // 2
|
601 |
+
|
602 |
+
self.in_layers = nn.Sequential(
|
603 |
+
normalization(channels),
|
604 |
+
nn.SiLU(),
|
605 |
+
conv_nd(dims, channels, self.out_channels, kernel_size, padding=padding),
|
606 |
+
)
|
607 |
+
|
608 |
+
self.updown = up or down
|
609 |
+
|
610 |
+
if up:
|
611 |
+
self.h_upd = Upsample(channels, False, dims)
|
612 |
+
self.x_upd = Upsample(channels, False, dims)
|
613 |
+
elif down:
|
614 |
+
self.h_upd = Downsample(channels, False, dims)
|
615 |
+
self.x_upd = Downsample(channels, False, dims)
|
616 |
+
else:
|
617 |
+
self.h_upd = self.x_upd = nn.Identity()
|
618 |
+
|
619 |
+
self.skip_t_emb = skip_t_emb
|
620 |
+
self.emb_out_channels = (
|
621 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels
|
622 |
+
)
|
623 |
+
if self.skip_t_emb:
|
624 |
+
# print(f"Skipping timestep embedding in {self.__class__.__name__}")
|
625 |
+
assert not self.use_scale_shift_norm
|
626 |
+
self.emb_layers = None
|
627 |
+
self.exchange_temb_dims = False
|
628 |
+
else:
|
629 |
+
self.emb_layers = nn.Sequential(
|
630 |
+
nn.SiLU(),
|
631 |
+
linear(
|
632 |
+
emb_channels,
|
633 |
+
self.emb_out_channels,
|
634 |
+
),
|
635 |
+
)
|
636 |
+
|
637 |
+
self.out_layers = nn.Sequential(
|
638 |
+
normalization(self.out_channels),
|
639 |
+
nn.SiLU(),
|
640 |
+
nn.Dropout(p=dropout),
|
641 |
+
zero_module(
|
642 |
+
conv_nd(
|
643 |
+
dims,
|
644 |
+
self.out_channels,
|
645 |
+
self.out_channels,
|
646 |
+
kernel_size,
|
647 |
+
padding=padding,
|
648 |
+
)
|
649 |
+
),
|
650 |
+
)
|
651 |
+
|
652 |
+
if self.out_channels == channels:
|
653 |
+
self.skip_connection = nn.Identity()
|
654 |
+
elif use_conv:
|
655 |
+
self.skip_connection = conv_nd(
|
656 |
+
dims, channels, self.out_channels, kernel_size, padding=padding
|
657 |
+
)
|
658 |
+
else:
|
659 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
660 |
+
|
661 |
+
def forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
662 |
+
"""
|
663 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
664 |
+
:param x: an [N x C x ...] Tensor of features.
|
665 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
666 |
+
:return: an [N x C x ...] Tensor of outputs.
|
667 |
+
"""
|
668 |
+
if self.use_checkpoint:
|
669 |
+
return checkpoint(self._forward, x, emb, use_reentrant=False)
|
670 |
+
else:
|
671 |
+
return self._forward(x, emb)
|
672 |
+
|
673 |
+
def _forward(self, x: torch.Tensor, emb: torch.Tensor) -> torch.Tensor:
|
674 |
+
if self.updown:
|
675 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
676 |
+
h = in_rest(x)
|
677 |
+
h = self.h_upd(h)
|
678 |
+
x = self.x_upd(x)
|
679 |
+
h = in_conv(h)
|
680 |
+
else:
|
681 |
+
h = self.in_layers(x)
|
682 |
+
|
683 |
+
if self.skip_t_emb:
|
684 |
+
emb_out = torch.zeros_like(h)
|
685 |
+
else:
|
686 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
687 |
+
while len(emb_out.shape) < len(h.shape):
|
688 |
+
emb_out = emb_out[..., None]
|
689 |
+
if self.use_scale_shift_norm:
|
690 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
691 |
+
scale, shift = torch.chunk(emb_out, 2, dim=1)
|
692 |
+
h = out_norm(h) * (1 + scale) + shift
|
693 |
+
h = out_rest(h)
|
694 |
+
else:
|
695 |
+
if self.exchange_temb_dims:
|
696 |
+
emb_out = rearrange(emb_out, "b t c ... -> b c t ...")
|
697 |
+
h = h + emb_out
|
698 |
+
h = self.out_layers(h)
|
699 |
+
return self.skip_connection(x) + h
|
700 |
+
#####
|
701 |
+
|
702 |
+
#####
|
703 |
+
from lvdm.modules.attention_svd import *
|
704 |
+
class VideoTransformerBlock(nn.Module):
|
705 |
+
ATTENTION_MODES = {
|
706 |
+
"softmax": CrossAttention,
|
707 |
+
"softmax-xformers": MemoryEfficientCrossAttention,
|
708 |
+
}
|
709 |
+
|
710 |
+
def __init__(
|
711 |
+
self,
|
712 |
+
dim,
|
713 |
+
n_heads,
|
714 |
+
d_head,
|
715 |
+
dropout=0.0,
|
716 |
+
context_dim=None,
|
717 |
+
gated_ff=True,
|
718 |
+
checkpoint=True,
|
719 |
+
timesteps=None,
|
720 |
+
ff_in=False,
|
721 |
+
inner_dim=None,
|
722 |
+
attn_mode="softmax",
|
723 |
+
disable_self_attn=False,
|
724 |
+
disable_temporal_crossattention=False,
|
725 |
+
switch_temporal_ca_to_sa=False,
|
726 |
+
):
|
727 |
+
super().__init__()
|
728 |
+
|
729 |
+
attn_cls = self.ATTENTION_MODES[attn_mode]
|
730 |
+
|
731 |
+
self.ff_in = ff_in or inner_dim is not None
|
732 |
+
if inner_dim is None:
|
733 |
+
inner_dim = dim
|
734 |
+
|
735 |
+
assert int(n_heads * d_head) == inner_dim
|
736 |
+
|
737 |
+
self.is_res = inner_dim == dim
|
738 |
+
|
739 |
+
if self.ff_in:
|
740 |
+
self.norm_in = nn.LayerNorm(dim)
|
741 |
+
self.ff_in = FeedForward(
|
742 |
+
dim, dim_out=inner_dim, dropout=dropout, glu=gated_ff
|
743 |
+
)
|
744 |
+
|
745 |
+
self.timesteps = timesteps
|
746 |
+
self.disable_self_attn = disable_self_attn
|
747 |
+
if self.disable_self_attn:
|
748 |
+
self.attn1 = attn_cls(
|
749 |
+
query_dim=inner_dim,
|
750 |
+
heads=n_heads,
|
751 |
+
dim_head=d_head,
|
752 |
+
context_dim=context_dim,
|
753 |
+
dropout=dropout,
|
754 |
+
) # is a cross-attention
|
755 |
+
else:
|
756 |
+
self.attn1 = attn_cls(
|
757 |
+
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
758 |
+
) # is a self-attention
|
759 |
+
|
760 |
+
self.ff = FeedForward(inner_dim, dim_out=dim, dropout=dropout, glu=gated_ff)
|
761 |
+
|
762 |
+
if disable_temporal_crossattention:
|
763 |
+
if switch_temporal_ca_to_sa:
|
764 |
+
raise ValueError
|
765 |
+
else:
|
766 |
+
self.attn2 = None
|
767 |
+
else:
|
768 |
+
self.norm2 = nn.LayerNorm(inner_dim)
|
769 |
+
if switch_temporal_ca_to_sa:
|
770 |
+
self.attn2 = attn_cls(
|
771 |
+
query_dim=inner_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
772 |
+
) # is a self-attention
|
773 |
+
else:
|
774 |
+
self.attn2 = attn_cls(
|
775 |
+
query_dim=inner_dim,
|
776 |
+
context_dim=context_dim,
|
777 |
+
heads=n_heads,
|
778 |
+
dim_head=d_head,
|
779 |
+
dropout=dropout,
|
780 |
+
) # is self-attn if context is none
|
781 |
+
|
782 |
+
self.norm1 = nn.LayerNorm(inner_dim)
|
783 |
+
self.norm3 = nn.LayerNorm(inner_dim)
|
784 |
+
self.switch_temporal_ca_to_sa = switch_temporal_ca_to_sa
|
785 |
+
|
786 |
+
self.checkpoint = checkpoint
|
787 |
+
if self.checkpoint:
|
788 |
+
print(f"====>{self.__class__.__name__} is using checkpointing")
|
789 |
+
else:
|
790 |
+
print(f"====>{self.__class__.__name__} is NOT using checkpointing")
|
791 |
+
|
792 |
+
def forward(
|
793 |
+
self, x: torch.Tensor, context: torch.Tensor = None, timesteps: int = None
|
794 |
+
) -> torch.Tensor:
|
795 |
+
if self.checkpoint:
|
796 |
+
return checkpoint(self._forward, x, context, timesteps, use_reentrant=False)
|
797 |
+
else:
|
798 |
+
return self._forward(x, context, timesteps=timesteps)
|
799 |
+
|
800 |
+
def _forward(self, x, context=None, timesteps=None):
|
801 |
+
assert self.timesteps or timesteps
|
802 |
+
assert not (self.timesteps and timesteps) or self.timesteps == timesteps
|
803 |
+
timesteps = self.timesteps or timesteps
|
804 |
+
B, S, C = x.shape
|
805 |
+
x = rearrange(x, "(b t) s c -> (b s) t c", t=timesteps)
|
806 |
+
|
807 |
+
if self.ff_in:
|
808 |
+
x_skip = x
|
809 |
+
x = self.ff_in(self.norm_in(x))
|
810 |
+
if self.is_res:
|
811 |
+
x += x_skip
|
812 |
+
|
813 |
+
if self.disable_self_attn:
|
814 |
+
x = self.attn1(self.norm1(x), context=context) + x
|
815 |
+
else:
|
816 |
+
x = self.attn1(self.norm1(x)) + x
|
817 |
+
|
818 |
+
if self.attn2 is not None:
|
819 |
+
if self.switch_temporal_ca_to_sa:
|
820 |
+
x = self.attn2(self.norm2(x)) + x
|
821 |
+
else:
|
822 |
+
x = self.attn2(self.norm2(x), context=context) + x
|
823 |
+
x_skip = x
|
824 |
+
x = self.ff(self.norm3(x))
|
825 |
+
if self.is_res:
|
826 |
+
x += x_skip
|
827 |
+
|
828 |
+
x = rearrange(
|
829 |
+
x, "(b s) t c -> (b t) s c", s=S, b=B // timesteps, c=C, t=timesteps
|
830 |
+
)
|
831 |
+
return x
|
832 |
+
|
833 |
+
def get_last_layer(self):
|
834 |
+
return self.ff.net[-1].weight
|
835 |
+
|
836 |
+
#####
|
837 |
+
|
838 |
+
#####
|
839 |
+
import functools
|
840 |
+
def partialclass(cls, *args, **kwargs):
|
841 |
+
class NewCls(cls):
|
842 |
+
__init__ = functools.partialmethod(cls.__init__, *args, **kwargs)
|
843 |
+
|
844 |
+
return NewCls
|
845 |
+
######
|
846 |
+
|
847 |
+
class VideoResBlock(ResnetBlock):
|
848 |
+
def __init__(
|
849 |
+
self,
|
850 |
+
out_channels,
|
851 |
+
*args,
|
852 |
+
dropout=0.0,
|
853 |
+
video_kernel_size=3,
|
854 |
+
alpha=0.0,
|
855 |
+
merge_strategy="learned",
|
856 |
+
**kwargs,
|
857 |
+
):
|
858 |
+
super().__init__(out_channels=out_channels, dropout=dropout, *args, **kwargs)
|
859 |
+
if video_kernel_size is None:
|
860 |
+
video_kernel_size = [3, 1, 1]
|
861 |
+
self.time_stack = ResBlock(
|
862 |
+
channels=out_channels,
|
863 |
+
emb_channels=0,
|
864 |
+
dropout=dropout,
|
865 |
+
dims=3,
|
866 |
+
use_scale_shift_norm=False,
|
867 |
+
use_conv=False,
|
868 |
+
up=False,
|
869 |
+
down=False,
|
870 |
+
kernel_size=video_kernel_size,
|
871 |
+
use_checkpoint=True,
|
872 |
+
skip_t_emb=True,
|
873 |
+
)
|
874 |
+
|
875 |
+
self.merge_strategy = merge_strategy
|
876 |
+
if self.merge_strategy == "fixed":
|
877 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
878 |
+
elif self.merge_strategy == "learned":
|
879 |
+
self.register_parameter(
|
880 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
881 |
+
)
|
882 |
+
else:
|
883 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
884 |
+
|
885 |
+
def get_alpha(self, bs):
|
886 |
+
if self.merge_strategy == "fixed":
|
887 |
+
return self.mix_factor
|
888 |
+
elif self.merge_strategy == "learned":
|
889 |
+
return torch.sigmoid(self.mix_factor)
|
890 |
+
else:
|
891 |
+
raise NotImplementedError()
|
892 |
+
|
893 |
+
def forward(self, x, temb, skip_video=False, timesteps=None):
|
894 |
+
if timesteps is None:
|
895 |
+
timesteps = self.timesteps
|
896 |
+
|
897 |
+
b, c, h, w = x.shape
|
898 |
+
|
899 |
+
x = super().forward(x, temb)
|
900 |
+
|
901 |
+
if not skip_video:
|
902 |
+
x_mix = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
903 |
+
|
904 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
905 |
+
|
906 |
+
x = self.time_stack(x, temb)
|
907 |
+
|
908 |
+
alpha = self.get_alpha(bs=b // timesteps)
|
909 |
+
x = alpha * x + (1.0 - alpha) * x_mix
|
910 |
+
|
911 |
+
x = rearrange(x, "b c t h w -> (b t) c h w")
|
912 |
+
return x
|
913 |
+
|
914 |
+
|
915 |
+
class AE3DConv(torch.nn.Conv2d):
|
916 |
+
def __init__(self, in_channels, out_channels, video_kernel_size=3, *args, **kwargs):
|
917 |
+
super().__init__(in_channels, out_channels, *args, **kwargs)
|
918 |
+
if isinstance(video_kernel_size, Iterable):
|
919 |
+
padding = [int(k // 2) for k in video_kernel_size]
|
920 |
+
else:
|
921 |
+
padding = int(video_kernel_size // 2)
|
922 |
+
|
923 |
+
self.time_mix_conv = torch.nn.Conv3d(
|
924 |
+
in_channels=out_channels,
|
925 |
+
out_channels=out_channels,
|
926 |
+
kernel_size=video_kernel_size,
|
927 |
+
padding=padding,
|
928 |
+
)
|
929 |
+
|
930 |
+
def forward(self, input, timesteps, skip_video=False):
|
931 |
+
x = super().forward(input)
|
932 |
+
if skip_video:
|
933 |
+
return x
|
934 |
+
x = rearrange(x, "(b t) c h w -> b c t h w", t=timesteps)
|
935 |
+
x = self.time_mix_conv(x)
|
936 |
+
return rearrange(x, "b c t h w -> (b t) c h w")
|
937 |
+
|
938 |
+
|
939 |
+
class VideoBlock(AttnBlock):
|
940 |
+
def __init__(
|
941 |
+
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
942 |
+
):
|
943 |
+
super().__init__(in_channels)
|
944 |
+
# no context, single headed, as in base class
|
945 |
+
self.time_mix_block = VideoTransformerBlock(
|
946 |
+
dim=in_channels,
|
947 |
+
n_heads=1,
|
948 |
+
d_head=in_channels,
|
949 |
+
checkpoint=True,
|
950 |
+
ff_in=True,
|
951 |
+
attn_mode="softmax",
|
952 |
+
)
|
953 |
+
|
954 |
+
time_embed_dim = self.in_channels * 4
|
955 |
+
self.video_time_embed = torch.nn.Sequential(
|
956 |
+
torch.nn.Linear(self.in_channels, time_embed_dim),
|
957 |
+
torch.nn.SiLU(),
|
958 |
+
torch.nn.Linear(time_embed_dim, self.in_channels),
|
959 |
+
)
|
960 |
+
|
961 |
+
self.merge_strategy = merge_strategy
|
962 |
+
if self.merge_strategy == "fixed":
|
963 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
964 |
+
elif self.merge_strategy == "learned":
|
965 |
+
self.register_parameter(
|
966 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
967 |
+
)
|
968 |
+
else:
|
969 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
970 |
+
|
971 |
+
def forward(self, x, timesteps, skip_video=False):
|
972 |
+
if skip_video:
|
973 |
+
return super().forward(x)
|
974 |
+
|
975 |
+
x_in = x
|
976 |
+
x = self.attention(x)
|
977 |
+
h, w = x.shape[2:]
|
978 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
979 |
+
|
980 |
+
x_mix = x
|
981 |
+
num_frames = torch.arange(timesteps, device=x.device)
|
982 |
+
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
983 |
+
num_frames = rearrange(num_frames, "b t -> (b t)")
|
984 |
+
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
985 |
+
emb = self.video_time_embed(t_emb) # b, n_channels
|
986 |
+
emb = emb[:, None, :]
|
987 |
+
x_mix = x_mix + emb
|
988 |
+
|
989 |
+
alpha = self.get_alpha()
|
990 |
+
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
991 |
+
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
|
992 |
+
|
993 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
994 |
+
x = self.proj_out(x)
|
995 |
+
|
996 |
+
return x_in + x
|
997 |
+
|
998 |
+
def get_alpha(
|
999 |
+
self,
|
1000 |
+
):
|
1001 |
+
if self.merge_strategy == "fixed":
|
1002 |
+
return self.mix_factor
|
1003 |
+
elif self.merge_strategy == "learned":
|
1004 |
+
return torch.sigmoid(self.mix_factor)
|
1005 |
+
else:
|
1006 |
+
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
1007 |
+
|
1008 |
+
|
1009 |
+
class MemoryEfficientVideoBlock(MemoryEfficientAttnBlock):
|
1010 |
+
def __init__(
|
1011 |
+
self, in_channels: int, alpha: float = 0, merge_strategy: str = "learned"
|
1012 |
+
):
|
1013 |
+
super().__init__(in_channels)
|
1014 |
+
# no context, single headed, as in base class
|
1015 |
+
self.time_mix_block = VideoTransformerBlock(
|
1016 |
+
dim=in_channels,
|
1017 |
+
n_heads=1,
|
1018 |
+
d_head=in_channels,
|
1019 |
+
checkpoint=True,
|
1020 |
+
ff_in=True,
|
1021 |
+
attn_mode="softmax-xformers",
|
1022 |
+
)
|
1023 |
+
|
1024 |
+
time_embed_dim = self.in_channels * 4
|
1025 |
+
self.video_time_embed = torch.nn.Sequential(
|
1026 |
+
torch.nn.Linear(self.in_channels, time_embed_dim),
|
1027 |
+
torch.nn.SiLU(),
|
1028 |
+
torch.nn.Linear(time_embed_dim, self.in_channels),
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
self.merge_strategy = merge_strategy
|
1032 |
+
if self.merge_strategy == "fixed":
|
1033 |
+
self.register_buffer("mix_factor", torch.Tensor([alpha]))
|
1034 |
+
elif self.merge_strategy == "learned":
|
1035 |
+
self.register_parameter(
|
1036 |
+
"mix_factor", torch.nn.Parameter(torch.Tensor([alpha]))
|
1037 |
+
)
|
1038 |
+
else:
|
1039 |
+
raise ValueError(f"unknown merge strategy {self.merge_strategy}")
|
1040 |
+
|
1041 |
+
def forward(self, x, timesteps, skip_time_block=False):
|
1042 |
+
if skip_time_block:
|
1043 |
+
return super().forward(x)
|
1044 |
+
|
1045 |
+
x_in = x
|
1046 |
+
x = self.attention(x)
|
1047 |
+
h, w = x.shape[2:]
|
1048 |
+
x = rearrange(x, "b c h w -> b (h w) c")
|
1049 |
+
|
1050 |
+
x_mix = x
|
1051 |
+
num_frames = torch.arange(timesteps, device=x.device)
|
1052 |
+
num_frames = repeat(num_frames, "t -> b t", b=x.shape[0] // timesteps)
|
1053 |
+
num_frames = rearrange(num_frames, "b t -> (b t)")
|
1054 |
+
t_emb = timestep_embedding(num_frames, self.in_channels, repeat_only=False)
|
1055 |
+
emb = self.video_time_embed(t_emb) # b, n_channels
|
1056 |
+
emb = emb[:, None, :]
|
1057 |
+
x_mix = x_mix + emb
|
1058 |
+
|
1059 |
+
alpha = self.get_alpha()
|
1060 |
+
x_mix = self.time_mix_block(x_mix, timesteps=timesteps)
|
1061 |
+
x = alpha * x + (1.0 - alpha) * x_mix # alpha merge
|
1062 |
+
|
1063 |
+
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w)
|
1064 |
+
x = self.proj_out(x)
|
1065 |
+
|
1066 |
+
return x_in + x
|
1067 |
+
|
1068 |
+
def get_alpha(
|
1069 |
+
self,
|
1070 |
+
):
|
1071 |
+
if self.merge_strategy == "fixed":
|
1072 |
+
return self.mix_factor
|
1073 |
+
elif self.merge_strategy == "learned":
|
1074 |
+
return torch.sigmoid(self.mix_factor)
|
1075 |
+
else:
|
1076 |
+
raise NotImplementedError(f"unknown merge strategy {self.merge_strategy}")
|
1077 |
+
|
1078 |
+
|
1079 |
+
def make_time_attn(
|
1080 |
+
in_channels,
|
1081 |
+
attn_type="vanilla",
|
1082 |
+
attn_kwargs=None,
|
1083 |
+
alpha: float = 0,
|
1084 |
+
merge_strategy: str = "learned",
|
1085 |
+
):
|
1086 |
+
assert attn_type in [
|
1087 |
+
"vanilla",
|
1088 |
+
"vanilla-xformers",
|
1089 |
+
], f"attn_type {attn_type} not supported for spatio-temporal attention"
|
1090 |
+
print(
|
1091 |
+
f"making spatial and temporal attention of type '{attn_type}' with {in_channels} in_channels"
|
1092 |
+
)
|
1093 |
+
if not XFORMERS_IS_AVAILABLE and attn_type == "vanilla-xformers":
|
1094 |
+
print(
|
1095 |
+
f"Attention mode '{attn_type}' is not available. Falling back to vanilla attention. "
|
1096 |
+
f"This is not a problem in Pytorch >= 2.0. FYI, you are running with PyTorch version {torch.__version__}"
|
1097 |
+
)
|
1098 |
+
attn_type = "vanilla"
|
1099 |
+
|
1100 |
+
if attn_type == "vanilla":
|
1101 |
+
assert attn_kwargs is None
|
1102 |
+
return partialclass(
|
1103 |
+
VideoBlock, in_channels, alpha=alpha, merge_strategy=merge_strategy
|
1104 |
+
)
|
1105 |
+
elif attn_type == "vanilla-xformers":
|
1106 |
+
print(f"building MemoryEfficientAttnBlock with {in_channels} in_channels...")
|
1107 |
+
return partialclass(
|
1108 |
+
MemoryEfficientVideoBlock,
|
1109 |
+
in_channels,
|
1110 |
+
alpha=alpha,
|
1111 |
+
merge_strategy=merge_strategy,
|
1112 |
+
)
|
1113 |
+
else:
|
1114 |
+
return NotImplementedError()
|
1115 |
+
|
1116 |
+
|
1117 |
+
class Conv2DWrapper(torch.nn.Conv2d):
|
1118 |
+
def forward(self, input: torch.Tensor, **kwargs) -> torch.Tensor:
|
1119 |
+
return super().forward(input)
|
1120 |
+
|
1121 |
+
|
1122 |
+
class VideoDecoder(Decoder):
|
1123 |
+
available_time_modes = ["all", "conv-only", "attn-only"]
|
1124 |
+
|
1125 |
+
def __init__(
|
1126 |
+
self,
|
1127 |
+
*args,
|
1128 |
+
video_kernel_size: Union[int, list] = [3,1,1],
|
1129 |
+
alpha: float = 0.0,
|
1130 |
+
merge_strategy: str = "learned",
|
1131 |
+
time_mode: str = "conv-only",
|
1132 |
+
**kwargs,
|
1133 |
+
):
|
1134 |
+
self.video_kernel_size = video_kernel_size
|
1135 |
+
self.alpha = alpha
|
1136 |
+
self.merge_strategy = merge_strategy
|
1137 |
+
self.time_mode = time_mode
|
1138 |
+
assert (
|
1139 |
+
self.time_mode in self.available_time_modes
|
1140 |
+
), f"time_mode parameter has to be in {self.available_time_modes}"
|
1141 |
+
super().__init__(*args, **kwargs)
|
1142 |
+
|
1143 |
+
def get_last_layer(self, skip_time_mix=False, **kwargs):
|
1144 |
+
if self.time_mode == "attn-only":
|
1145 |
+
raise NotImplementedError("TODO")
|
1146 |
+
else:
|
1147 |
+
return (
|
1148 |
+
self.conv_out.time_mix_conv.weight
|
1149 |
+
if not skip_time_mix
|
1150 |
+
else self.conv_out.weight
|
1151 |
+
)
|
1152 |
+
|
1153 |
+
def _make_attn(self) -> Callable:
|
1154 |
+
if self.time_mode not in ["conv-only", "only-last-conv"]:
|
1155 |
+
return partialclass(
|
1156 |
+
make_time_attn,
|
1157 |
+
alpha=self.alpha,
|
1158 |
+
merge_strategy=self.merge_strategy,
|
1159 |
+
)
|
1160 |
+
else:
|
1161 |
+
return super()._make_attn()
|
1162 |
+
|
1163 |
+
def _make_conv(self) -> Callable:
|
1164 |
+
if self.time_mode != "attn-only":
|
1165 |
+
return partialclass(AE3DConv, video_kernel_size=self.video_kernel_size)
|
1166 |
+
else:
|
1167 |
+
return Conv2DWrapper
|
1168 |
+
|
1169 |
+
def _make_resblock(self) -> Callable:
|
1170 |
+
if self.time_mode not in ["attn-only", "only-last-conv"]:
|
1171 |
+
return partialclass(
|
1172 |
+
VideoResBlock,
|
1173 |
+
video_kernel_size=self.video_kernel_size,
|
1174 |
+
alpha=self.alpha,
|
1175 |
+
merge_strategy=self.merge_strategy,
|
1176 |
+
)
|
1177 |
+
else:
|
1178 |
return super()._make_resblock()
|