Update gradio_app.py
Browse files- gradio_app.py +346 -348
gradio_app.py
CHANGED
@@ -1,349 +1,347 @@
|
|
1 |
-
import os, argparse
|
2 |
-
import sys
|
3 |
-
import gradio as gr
|
4 |
-
# from scripts.gradio.i2v_test_application import Image2Video
|
5 |
-
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
|
6 |
-
import spaces
|
7 |
-
|
8 |
-
|
9 |
-
import os
|
10 |
-
import time
|
11 |
-
from omegaconf import OmegaConf
|
12 |
-
import torch
|
13 |
-
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
|
14 |
-
from utils.utils import instantiate_from_config
|
15 |
-
from huggingface_hub import hf_hub_download
|
16 |
-
from einops import repeat
|
17 |
-
import torchvision.transforms as transforms
|
18 |
-
from pytorch_lightning import seed_everything
|
19 |
-
from einops import rearrange
|
20 |
-
from cldm.model import load_state_dict
|
21 |
-
import cv2
|
22 |
-
|
23 |
-
import torch
|
24 |
-
print("cuda available:", torch.cuda.is_available())
|
25 |
-
|
26 |
-
|
27 |
-
from huggingface_hub import snapshot_download
|
28 |
-
import os
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
def download_model():
|
33 |
-
REPO_ID = 'fbnnb/TC_sketch'
|
34 |
-
filename_list = ['tc_sketch.pt']
|
35 |
-
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
|
36 |
-
if not os.path.exists(tar_dir):
|
37 |
-
os.makedirs(tar_dir)
|
38 |
-
for filename in filename_list:
|
39 |
-
local_file = os.path.join(tar_dir, filename)
|
40 |
-
if not os.path.exists(local_file):
|
41 |
-
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
|
42 |
-
print("downloaded")
|
43 |
-
|
44 |
-
|
45 |
-
def get_latent_z_with_hidden_states(model, videos):
|
46 |
-
b, c, t, h, w = videos.shape
|
47 |
-
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
48 |
-
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
|
49 |
-
|
50 |
-
hidden_states_first_last = []
|
51 |
-
### use only the first and last hidden states
|
52 |
-
for hid in hidden_states:
|
53 |
-
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
|
54 |
-
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
|
55 |
-
hidden_states_first_last.append(hid_new)
|
56 |
-
|
57 |
-
z = model.get_first_stage_encoding(encoder_posterior).detach()
|
58 |
-
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
59 |
-
return z, hidden_states_first_last
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
def extract_frames(video_path):
|
64 |
-
# εη»γγ‘γ€γ«γθͺγΏθΎΌγ
|
65 |
-
cap = cv2.VideoCapture(video_path)
|
66 |
-
|
67 |
-
frame_list = []
|
68 |
-
frame_num = 0
|
69 |
-
|
70 |
-
while True:
|
71 |
-
# γγ¬γΌγ γθͺγΏθΎΌγ
|
72 |
-
ret, frame = cap.read()
|
73 |
-
if not ret:
|
74 |
-
break
|
75 |
-
|
76 |
-
# γγ¬γΌγ γγͺγΉγγ«θΏ½ε
|
77 |
-
frame_list.append(frame)
|
78 |
-
frame_num += 1
|
79 |
-
|
80 |
-
print("load video length:", len(frame_list))
|
81 |
-
# εη»γγ‘γ€γ«γιγγ
|
82 |
-
cap.release()
|
83 |
-
|
84 |
-
return frame_list
|
85 |
-
|
86 |
-
|
87 |
-
resolution = '576_1024'
|
88 |
-
resolution = (576, 1024)
|
89 |
-
download_model()
|
90 |
-
print("after download model")
|
91 |
-
result_dir = "./results/"
|
92 |
-
if not os.path.exists(result_dir):
|
93 |
-
os.mkdir(result_dir)
|
94 |
-
|
95 |
-
#ToonCrafterModel
|
96 |
-
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
|
97 |
-
config_file='configs/inference_1024_v1.0.yaml'
|
98 |
-
config = OmegaConf.load(config_file)
|
99 |
-
model_config = config.pop("model", OmegaConf.create())
|
100 |
-
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
101 |
-
|
102 |
-
model = instantiate_from_config(model_config)
|
103 |
-
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
# cn_model
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
h
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
print("
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
print(
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
#
|
164 |
-
#
|
165 |
-
#
|
166 |
-
#
|
167 |
-
#
|
168 |
-
|
169 |
-
# cn_tensor =
|
170 |
-
|
171 |
-
#
|
172 |
-
#
|
173 |
-
|
174 |
-
#
|
175 |
-
|
176 |
-
|
177 |
-
#
|
178 |
-
|
179 |
-
#
|
180 |
-
#
|
181 |
-
#
|
182 |
-
#
|
183 |
-
#
|
184 |
-
#
|
185 |
-
#
|
186 |
-
#
|
187 |
-
#
|
188 |
-
#
|
189 |
-
|
190 |
-
#
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
img_tensor =
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
img_tensor2 =
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
videos = torch.cat([videos,
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
img_tensor_repeat =
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
prompt_str
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
saved_result_dir
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
with gr.Row():
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
with gr.Row():
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
dynamicrafter_iface.
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
|
348 |
-
# dynamicrafter_iface.launch()
|
349 |
# print("launched...")
|
|
|
1 |
+
import os, argparse
|
2 |
+
import sys
|
3 |
+
import gradio as gr
|
4 |
+
# from scripts.gradio.i2v_test_application import Image2Video
|
5 |
+
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm'))
|
6 |
+
import spaces
|
7 |
+
|
8 |
+
|
9 |
+
import os
|
10 |
+
import time
|
11 |
+
from omegaconf import OmegaConf
|
12 |
+
import torch
|
13 |
+
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z
|
14 |
+
from utils.utils import instantiate_from_config
|
15 |
+
from huggingface_hub import hf_hub_download
|
16 |
+
from einops import repeat
|
17 |
+
import torchvision.transforms as transforms
|
18 |
+
from pytorch_lightning import seed_everything
|
19 |
+
from einops import rearrange
|
20 |
+
from cldm.model import load_state_dict
|
21 |
+
import cv2
|
22 |
+
|
23 |
+
import torch
|
24 |
+
print("cuda available:", torch.cuda.is_available())
|
25 |
+
|
26 |
+
|
27 |
+
from huggingface_hub import snapshot_download
|
28 |
+
import os
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
def download_model():
|
33 |
+
REPO_ID = 'fbnnb/TC_sketch'
|
34 |
+
filename_list = ['tc_sketch.pt']
|
35 |
+
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/'
|
36 |
+
if not os.path.exists(tar_dir):
|
37 |
+
os.makedirs(tar_dir)
|
38 |
+
for filename in filename_list:
|
39 |
+
local_file = os.path.join(tar_dir, filename)
|
40 |
+
if not os.path.exists(local_file):
|
41 |
+
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False)
|
42 |
+
print("downloaded")
|
43 |
+
|
44 |
+
|
45 |
+
def get_latent_z_with_hidden_states(model, videos):
|
46 |
+
b, c, t, h, w = videos.shape
|
47 |
+
x = rearrange(videos, 'b c t h w -> (b t) c h w')
|
48 |
+
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True)
|
49 |
+
|
50 |
+
hidden_states_first_last = []
|
51 |
+
### use only the first and last hidden states
|
52 |
+
for hid in hidden_states:
|
53 |
+
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t)
|
54 |
+
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2)
|
55 |
+
hidden_states_first_last.append(hid_new)
|
56 |
+
|
57 |
+
z = model.get_first_stage_encoding(encoder_posterior).detach()
|
58 |
+
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t)
|
59 |
+
return z, hidden_states_first_last
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def extract_frames(video_path):
|
64 |
+
# εη»γγ‘γ€γ«γθͺγΏθΎΌγ
|
65 |
+
cap = cv2.VideoCapture(video_path)
|
66 |
+
|
67 |
+
frame_list = []
|
68 |
+
frame_num = 0
|
69 |
+
|
70 |
+
while True:
|
71 |
+
# γγ¬γΌγ γθͺγΏθΎΌγ
|
72 |
+
ret, frame = cap.read()
|
73 |
+
if not ret:
|
74 |
+
break
|
75 |
+
|
76 |
+
# γγ¬γΌγ γγͺγΉγγ«θΏ½ε
|
77 |
+
frame_list.append(frame)
|
78 |
+
frame_num += 1
|
79 |
+
|
80 |
+
print("load video length:", len(frame_list))
|
81 |
+
# εη»γγ‘γ€γ«γιγγ
|
82 |
+
cap.release()
|
83 |
+
|
84 |
+
return frame_list
|
85 |
+
|
86 |
+
|
87 |
+
resolution = '576_1024'
|
88 |
+
resolution = (576, 1024)
|
89 |
+
download_model()
|
90 |
+
print("after download model")
|
91 |
+
result_dir = "./results/"
|
92 |
+
if not os.path.exists(result_dir):
|
93 |
+
os.mkdir(result_dir)
|
94 |
+
|
95 |
+
#ToonCrafterModel
|
96 |
+
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc_sketch.pt'
|
97 |
+
config_file='configs/inference_1024_v1.0.yaml'
|
98 |
+
config = OmegaConf.load(config_file)
|
99 |
+
model_config = config.pop("model", OmegaConf.create())
|
100 |
+
model_config['params']['unet_config']['params']['use_checkpoint']=False
|
101 |
+
|
102 |
+
model = instantiate_from_config(model_config)
|
103 |
+
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!"
|
104 |
+
model = load_model_checkpoint(model, ckpt_path)
|
105 |
+
model.eval()
|
106 |
+
|
107 |
+
# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu'))
|
108 |
+
# cn_model.eval()
|
109 |
+
|
110 |
+
# model.control_model = cn_model
|
111 |
+
# model_list.append(model)
|
112 |
+
|
113 |
+
save_fps = 8
|
114 |
+
print("resolution:", resolution)
|
115 |
+
print("init done.")
|
116 |
+
|
117 |
+
def transpose_if_needed(tensor):
|
118 |
+
h = tensor.shape[-2]
|
119 |
+
w = tensor.shape[-1]
|
120 |
+
if h > w:
|
121 |
+
tensor = tensor.permute(0, 2, 1)
|
122 |
+
return tensor
|
123 |
+
|
124 |
+
def untranspose(tensor):
|
125 |
+
ndim = tensor.ndim
|
126 |
+
return tensor.transpose(ndim-1, ndim-2)
|
127 |
+
|
128 |
+
@spaces.GPU(duration=200)
|
129 |
+
def get_image(image, sketch, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, control_scale=0.6):
|
130 |
+
print("enter fn")
|
131 |
+
# control_frames = extract_frames(frame_guides)
|
132 |
+
print("extract frames")
|
133 |
+
seed_everything(seed)
|
134 |
+
transform = transforms.Compose([
|
135 |
+
transforms.Resize(min(resolution)),
|
136 |
+
transforms.CenterCrop(resolution),
|
137 |
+
])
|
138 |
+
print("before empty cache")
|
139 |
+
torch.cuda.empty_cache()
|
140 |
+
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())))
|
141 |
+
start = time.time()
|
142 |
+
gpu_id=0
|
143 |
+
if steps > 60:
|
144 |
+
steps = 60
|
145 |
+
|
146 |
+
global model
|
147 |
+
# model = model_list[gpu_id]
|
148 |
+
model = model.cuda()
|
149 |
+
|
150 |
+
batch_size=1
|
151 |
+
channels = model.model.diffusion_model.out_channels
|
152 |
+
frames = model.temporal_length
|
153 |
+
h, w = resolution[0] // 8, resolution[1] // 8
|
154 |
+
noise_shape = [batch_size, channels, frames, h, w]
|
155 |
+
|
156 |
+
# text cond
|
157 |
+
transposed = False
|
158 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
159 |
+
text_emb = model.get_learned_conditioning([prompt])
|
160 |
+
print("before control")
|
161 |
+
#control cond
|
162 |
+
# if frame_guides is not None:
|
163 |
+
# cn_videos = []
|
164 |
+
# for frame in control_frames:
|
165 |
+
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
166 |
+
# frame = cv2.bitwise_not(frame)
|
167 |
+
# cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device)
|
168 |
+
|
169 |
+
# #cn_tensor = (cn_tensor / 255. - 0.5) * 2
|
170 |
+
# cn_tensor = ( cn_tensor/255.0 )
|
171 |
+
# cn_tensor = transpose_if_needed(cn_tensor)
|
172 |
+
# cn_tensor_resized = transform(cn_tensor) #3,h,w
|
173 |
+
|
174 |
+
# cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
|
175 |
+
# cn_videos.append(cn_video)
|
176 |
+
|
177 |
+
# cn_videos = torch.cat(cn_videos, dim=2)
|
178 |
+
# if cn_videos.shape[2] > frames:
|
179 |
+
# idxs = []
|
180 |
+
# for i in range(frames):
|
181 |
+
# index = int((i + 0.5) * cn_videos.shape[2] / frames)
|
182 |
+
# idxs.append(min(index, cn_videos.shape[2] - 1))
|
183 |
+
# cn_videos = cn_videos[:, :, idxs, :, :]
|
184 |
+
# print("cn_videos.shape after slicing", cn_videos.shape)
|
185 |
+
# model_list = []
|
186 |
+
# for model in model_list:
|
187 |
+
# model.control_scale = control_scale
|
188 |
+
# model_list.append(model)
|
189 |
+
|
190 |
+
# else:
|
191 |
+
cn_videos = None
|
192 |
+
|
193 |
+
print("image cond")
|
194 |
+
|
195 |
+
# img cond
|
196 |
+
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device)
|
197 |
+
input_h, input_w = img_tensor.shape[1:]
|
198 |
+
img_tensor = (img_tensor / 255. - 0.5) * 2
|
199 |
+
img_tensor = transpose_if_needed(img_tensor)
|
200 |
+
|
201 |
+
image_tensor_resized = transform(img_tensor) #3,h,w
|
202 |
+
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw
|
203 |
+
print("get latent z")
|
204 |
+
# z = get_latent_z(model, videos) #bc,1,hw
|
205 |
+
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
|
206 |
+
|
207 |
+
if sketch is not None:
|
208 |
+
img_tensor2 = torch.from_numpy(sketch).permute(2, 0, 1).float().to(model.device)
|
209 |
+
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2
|
210 |
+
img_tensor2 = transpose_if_needed(img_tensor2)
|
211 |
+
image_tensor_resized2 = transform(img_tensor2) #3,h,w
|
212 |
+
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw
|
213 |
+
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2)
|
214 |
+
|
215 |
+
videos = torch.cat([videos, videos2], dim=2)
|
216 |
+
else:
|
217 |
+
videos = torch.cat([videos, videos], dim=2)
|
218 |
+
|
219 |
+
z, hs = get_latent_z_with_hidden_states(model, videos)
|
220 |
+
|
221 |
+
img_tensor_repeat = torch.zeros_like(z)
|
222 |
+
|
223 |
+
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:]
|
224 |
+
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:]
|
225 |
+
|
226 |
+
print("image embedder")
|
227 |
+
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc
|
228 |
+
img_emb = model.image_proj_model(cond_images)
|
229 |
+
|
230 |
+
imtext_cond = torch.cat([text_emb, img_emb], dim=1)
|
231 |
+
|
232 |
+
fs = torch.tensor([fs], dtype=torch.long, device=model.device)
|
233 |
+
# print("cn videos:",cn_videos.shape, "img emb:", img_emb.shape)
|
234 |
+
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos}
|
235 |
+
|
236 |
+
print("before sample loop")
|
237 |
+
## inference
|
238 |
+
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs)
|
239 |
+
|
240 |
+
## remove the last frame
|
241 |
+
if image2 is None:
|
242 |
+
batch_samples = batch_samples[:,:,:,:-1,...]
|
243 |
+
## b,samples,c,t,h,w
|
244 |
+
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt
|
245 |
+
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str
|
246 |
+
prompt_str=prompt_str[:40]
|
247 |
+
if len(prompt_str) == 0:
|
248 |
+
prompt_str = 'empty_prompt'
|
249 |
+
|
250 |
+
global result_dir
|
251 |
+
global save_fps
|
252 |
+
if input_h > input_w:
|
253 |
+
batch_samples = untranspose(batch_samples)
|
254 |
+
|
255 |
+
save_videos(batch_samples, result_dir, filenames=[prompt_str], fps=save_fps)
|
256 |
+
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds")
|
257 |
+
model = model.cpu()
|
258 |
+
saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4")
|
259 |
+
print("result saved to:", saved_result_dir)
|
260 |
+
return saved_result_dir
|
261 |
+
|
262 |
+
|
263 |
+
# @spaces.GPU
|
264 |
+
|
265 |
+
|
266 |
+
|
267 |
+
i2v_examples_interp_1024 = [
|
268 |
+
['prompts/1024_interp/frame_000000.jpg', 'prompts/1024_interp/frame_000041.jpg', 'a cat is eating', 50, 7.5, 1.0, 10, 123]
|
269 |
+
]
|
270 |
+
|
271 |
+
|
272 |
+
|
273 |
+
|
274 |
+
def dynamicrafter_demo(result_dir='./tmp/', res=1024):
|
275 |
+
if res == 1024:
|
276 |
+
resolution = '576_1024'
|
277 |
+
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}"""
|
278 |
+
elif res == 512:
|
279 |
+
resolution = '320_512'
|
280 |
+
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}"""
|
281 |
+
elif res == 256:
|
282 |
+
resolution = '256_256'
|
283 |
+
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}"""
|
284 |
+
else:
|
285 |
+
raise NotImplementedError(f"Unsupported resolution: {res}")
|
286 |
+
# image2video = Image2Video(result_dir, resolution=resolution)
|
287 |
+
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface:
|
288 |
+
|
289 |
+
|
290 |
+
|
291 |
+
with gr.Tab(label='ToonCrafter_320x512'):
|
292 |
+
with gr.Column():
|
293 |
+
with gr.Row():
|
294 |
+
with gr.Column():
|
295 |
+
with gr.Row():
|
296 |
+
i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img")
|
297 |
+
# frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True)
|
298 |
+
with gr.Row():
|
299 |
+
i2v_input_text = gr.Text(label='Prompts')
|
300 |
+
with gr.Row():
|
301 |
+
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123)
|
302 |
+
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta")
|
303 |
+
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale")
|
304 |
+
with gr.Row():
|
305 |
+
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50)
|
306 |
+
i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10)
|
307 |
+
control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6)
|
308 |
+
i2v_end_btn = gr.Button("Generate")
|
309 |
+
with gr.Column():
|
310 |
+
with gr.Row():
|
311 |
+
i2v_input_sketch = gr.Image(label="Input End SKetch",elem_id="input_img2")
|
312 |
+
with gr.Row():
|
313 |
+
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True)
|
314 |
+
|
315 |
+
gr.Examples(examples=i2v_examples_interp_1024,
|
316 |
+
inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
|
317 |
+
outputs=[i2v_output_video],
|
318 |
+
fn = get_image,
|
319 |
+
cache_examples=False,
|
320 |
+
)
|
321 |
+
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale],
|
322 |
+
outputs=[i2v_output_video],
|
323 |
+
fn = get_image
|
324 |
+
)
|
325 |
+
|
326 |
+
|
327 |
+
return dynamicrafter_iface
|
328 |
+
|
329 |
+
|
330 |
+
def get_parser():
|
331 |
+
parser = argparse.ArgumentParser()
|
332 |
+
return parser
|
333 |
+
|
334 |
+
|
335 |
+
if __name__ == "__main__":
|
336 |
+
parser = get_parser()
|
337 |
+
args = parser.parse_args()
|
338 |
+
|
339 |
+
result_dir = os.path.join('./', 'results')
|
340 |
+
dynamicrafter_iface = dynamicrafter_demo(result_dir)
|
341 |
+
dynamicrafter_iface.queue(max_size=12)
|
342 |
+
print("launching...")
|
343 |
+
# dynamicrafter_iface.launch(max_threads=1, share=True)
|
344 |
+
|
345 |
+
dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345)
|
346 |
+
# dynamicrafter_iface.launch()
|
|
|
|
|
347 |
# print("launched...")
|