Spaces:
Running
on
Zero
Running
on
Zero
import os, argparse | |
import sys | |
import gradio as gr | |
# from scripts.gradio.i2v_test_application import Image2Video | |
sys.path.insert(1, os.path.join(sys.path[0], 'lvdm')) | |
import spaces | |
import os | |
import time | |
from omegaconf import OmegaConf | |
import torch | |
from scripts.evaluation.funcs import load_model_checkpoint, save_videos, batch_ddim_sampling, get_latent_z | |
from utils.utils import instantiate_from_config | |
from huggingface_hub import hf_hub_download | |
from einops import repeat | |
import torchvision.transforms as transforms | |
from pytorch_lightning import seed_everything | |
from einops import rearrange | |
import cv2 | |
import torch | |
print("cuda available:", torch.cuda.is_available()) | |
from huggingface_hub import snapshot_download | |
import os | |
def download_model(): | |
REPO_ID = 'fbnnb/tc_1024' | |
filename_list = ['tc1024_4k.ckpt'] | |
tar_dir = './checkpoints/tooncrafter_1024_interp_sketch/' | |
if not os.path.exists(tar_dir): | |
os.makedirs(tar_dir) | |
for filename in filename_list: | |
local_file = os.path.join(tar_dir, filename) | |
if not os.path.exists(local_file): | |
hf_hub_download(repo_id=REPO_ID, filename=filename, local_dir=tar_dir, local_dir_use_symlinks=False) | |
print("downloaded") | |
def get_latent_z_with_hidden_states(model, videos): | |
b, c, t, h, w = videos.shape | |
x = rearrange(videos, 'b c t h w -> (b t) c h w') | |
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True) | |
hidden_states_first_last = [] | |
### use only the first and last hidden states | |
for hid in hidden_states: | |
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t) | |
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) | |
hidden_states_first_last.append(hid_new) | |
z = model.get_first_stage_encoding(encoder_posterior).detach() | |
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) | |
return z, hidden_states_first_last | |
def extract_frames(video_path): | |
# 動画ファイルを読み込む | |
cap = cv2.VideoCapture(video_path) | |
frame_list = [] | |
frame_num = 0 | |
while True: | |
# フレームを読み込む | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# フレームをリストに追加 | |
frame_list.append(frame) | |
frame_num += 1 | |
print("load video length:", len(frame_list)) | |
# 動画ファイルを閉じる | |
cap.release() | |
return frame_list | |
resolution = '576_1024' | |
resolution = (576, 1024) | |
download_model() | |
print("after download model") | |
result_dir = "./results/" | |
if not os.path.exists(result_dir): | |
os.mkdir(result_dir) | |
#ToonCrafterModel | |
ckpt_path='checkpoints/tooncrafter_1024_interp_sketch/tc1024_4k.ckpt' | |
# ckpt_path="/group/40005/gzhiwang/tc1024_4k.ckpt" | |
config_file='configs/inference_1024_v1.0.yaml' | |
config = OmegaConf.load(config_file) | |
model_config = config.pop("model", OmegaConf.create()) | |
model_config['params']['unet_config']['params']['use_checkpoint']=False | |
model = instantiate_from_config(model_config) | |
assert os.path.exists(ckpt_path), "Error: checkpoint Not Found!" | |
# model = load_model_checkpoint(model, ckpt_path) | |
state = torch.load(ckpt_path, map_location='cpu') | |
if 'state_dict' in state: | |
state = state['state_dict'] | |
if 'module' in state: | |
state = state['module'] | |
missing, unexpected = model.load_state_dict(state, strict=False) | |
print("missing:", missing) | |
print("unexpected:", unexpected) | |
model.eval() | |
# cn_model.load_state_dict(load_state_dict(cn_ckpt_path, location='cpu')) | |
# cn_model.eval() | |
# model.control_model = cn_model | |
# model_list.append(model) | |
save_fps = 8 | |
print("resolution:", resolution) | |
print("init done.") | |
def transpose_if_needed(tensor): | |
h = tensor.shape[-2] | |
w = tensor.shape[-1] | |
if h > w: | |
tensor = tensor.permute(0, 2, 1) | |
return tensor | |
def untranspose(tensor): | |
ndim = tensor.ndim | |
return tensor.transpose(ndim-1, ndim-2) | |
def get_image(image, sketch, prompt, steps=50, cfg_scale=7.5, eta=1.0, fs=3, seed=123, control_scale=0.6): | |
print("enter fn") | |
# control_frames = extract_frames(frame_guides) | |
print("extract frames") | |
seed_everything(seed) | |
transform = transforms.Compose([ | |
transforms.Resize(min(resolution)), | |
transforms.CenterCrop(resolution), | |
]) | |
transform = transforms.Compose([ | |
transforms.Resize(resolution), | |
]) | |
print("before empty cache") | |
torch.cuda.empty_cache() | |
print('start:', prompt, time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time()))) | |
start = time.time() | |
gpu_id=0 | |
if steps > 60: | |
steps = 60 | |
global model | |
# model = model_list[gpu_id] | |
model = model.cuda() | |
batch_size=1 | |
channels = model.model.diffusion_model.out_channels | |
frames = model.temporal_length | |
h, w = resolution[0] // 8, resolution[1] // 8 | |
noise_shape = [batch_size, channels, frames, h, w] | |
# text cond | |
transposed = False | |
with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16): | |
text_emb = model.get_learned_conditioning([prompt]) | |
print("before control") | |
#control cond | |
# if frame_guides is not None: | |
# cn_videos = [] | |
# for frame in control_frames: | |
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) | |
# frame = cv2.bitwise_not(frame) | |
# cn_tensor = torch.from_numpy(frame).unsqueeze(2).permute(2, 0, 1).float().to(model.device) | |
# #cn_tensor = (cn_tensor / 255. - 0.5) * 2 | |
# cn_tensor = ( cn_tensor/255.0 ) | |
# cn_tensor = transpose_if_needed(cn_tensor) | |
# cn_tensor_resized = transform(cn_tensor) #3,h,w | |
# cn_video = cn_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw | |
# cn_videos.append(cn_video) | |
# cn_videos = torch.cat(cn_videos, dim=2) | |
# if cn_videos.shape[2] > frames: | |
# idxs = [] | |
# for i in range(frames): | |
# index = int((i + 0.5) * cn_videos.shape[2] / frames) | |
# idxs.append(min(index, cn_videos.shape[2] - 1)) | |
# cn_videos = cn_videos[:, :, idxs, :, :] | |
# print("cn_videos.shape after slicing", cn_videos.shape) | |
# model_list = [] | |
# for model in model_list: | |
# model.control_scale = control_scale | |
# model_list.append(model) | |
# else: | |
cn_videos = None | |
print("image cond") | |
# img cond | |
img_tensor = torch.from_numpy(image).permute(2, 0, 1).float().to(model.device) | |
input_h, input_w = img_tensor.shape[1:] | |
img_tensor = (img_tensor / 255. - 0.5) * 2 | |
img_tensor = transpose_if_needed(img_tensor) | |
image_tensor_resized = transform(img_tensor) #3,h,w | |
videos = image_tensor_resized.unsqueeze(0).unsqueeze(2) # bc1hw | |
print("get latent z") | |
# z = get_latent_z(model, videos) #bc,1,hw | |
videos = repeat(videos, 'b c t h w -> b c (repeat t) h w', repeat=frames//2) | |
if sketch is not None: | |
img_tensor2 = torch.from_numpy(sketch).permute(2, 0, 1).float().to(model.device) | |
img_tensor2 = (img_tensor2 / 255. - 0.5) * 2 | |
img_tensor2 = transpose_if_needed(img_tensor2) | |
image_tensor_resized2 = transform(img_tensor2) #3,h,w | |
videos2 = image_tensor_resized2.unsqueeze(0).unsqueeze(2) # bchw | |
videos2 = repeat(videos2, 'b c t h w -> b c (repeat t) h w', repeat=frames//2) | |
videos = torch.cat([videos, videos2], dim=2) | |
else: | |
videos = torch.cat([videos, videos], dim=2) | |
z, hs = get_latent_z_with_hidden_states(model, videos) | |
img_tensor_repeat = torch.zeros_like(z) | |
img_tensor_repeat[:,:,:1,:,:] = z[:,:,:1,:,:] | |
img_tensor_repeat[:,:,-1:,:,:] = z[:,:,-1:,:,:] | |
print("image embedder") | |
cond_images = model.embedder(img_tensor.unsqueeze(0)) ## blc | |
img_emb = model.image_proj_model(cond_images) | |
imtext_cond = torch.cat([text_emb, img_emb], dim=1) | |
fs = torch.tensor([fs], dtype=torch.long, device=model.device) | |
# print("cn videos:",cn_videos.shape, "img emb:", img_emb.shape) | |
cond = {"c_crossattn": [imtext_cond], "fs": fs, "c_concat": [img_tensor_repeat], "control_cond": cn_videos} | |
print("before sample loop") | |
## inference | |
batch_samples = batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=steps, ddim_eta=eta, cfg_scale=cfg_scale, hs=hs) | |
## remove the last frame | |
# if image2 is None: | |
batch_samples = batch_samples[:,:,:,:-1,...] | |
## b,samples,c,t,h,w | |
prompt_str = prompt.replace("/", "_slash_") if "/" in prompt else prompt | |
prompt_str = prompt_str.replace(" ", "_") if " " in prompt else prompt_str | |
prompt_str=prompt_str[:40] | |
if len(prompt_str) == 0: | |
prompt_str = 'empty_prompt' | |
global result_dir | |
global save_fps | |
if input_h > input_w: | |
batch_samples = untranspose(batch_samples) | |
save_videos(batch_samples, result_dir, filenames=[prompt_str], fps=save_fps) | |
print(f"Saved in {prompt_str}. Time used: {(time.time() - start):.2f} seconds") | |
model = model.cpu() | |
saved_result_dir = os.path.join(result_dir, f"{prompt_str}.mp4") | |
print("result saved to:", saved_result_dir) | |
return saved_result_dir | |
# @spaces.GPU | |
# i2v_examples_interp_1024 = [ | |
# ['prompts/1024_interp/frame_000000.jpg', 'prompts/1024_interp/frame_000041.jpg', 'a cat is eating', 50, 7.5, 1.0, 10, 123] | |
# ] | |
i2v_examples_interp_1024 = [ | |
['prompts/1024_interp/74906_1462_frame1.png', 'prompts/1024_interp/74906_1462_frame3.png', | |
'an anime scene', | |
50, 7.5, 1.0, 10, 123] | |
] | |
def dynamicrafter_demo(result_dir='./tmp/', res=1024): | |
if res == 1024: | |
resolution = '576_1024' | |
css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height:576px}""" | |
elif res == 512: | |
resolution = '320_512' | |
css = """#input_img {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px} #input_img2 {max-width: 512px !important} #output_vid {max-width: 512px; max-height: 320px}""" | |
elif res == 256: | |
resolution = '256_256' | |
css = """#input_img {max-width: 256px !important} #output_vid {max-width: 256px; max-height: 256px}""" | |
else: | |
raise NotImplementedError(f"Unsupported resolution: {res}") | |
# image2video = Image2Video(result_dir, resolution=resolution) | |
with gr.Blocks(analytics_enabled=False, css=css) as dynamicrafter_iface: | |
with gr.Tab(label='ToonCrafter_576x1024'): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
i2v_input_image = gr.Image(label="Input Image1",elem_id="input_img") | |
# frame_guides = gr.Video(label="Input Guidance",elem_id="input_guidance", autoplay=True,show_share_button=True) | |
with gr.Row(): | |
i2v_input_text = gr.Text(label='Prompts') | |
with gr.Row(): | |
i2v_seed = gr.Slider(label='Random Seed', minimum=0, maximum=50000, step=1, value=123) | |
i2v_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, label='ETA', value=1.0, elem_id="i2v_eta") | |
i2v_cfg_scale = gr.Slider(minimum=1.0, maximum=15.0, step=0.5, label='CFG Scale', value=7.5, elem_id="i2v_cfg_scale") | |
with gr.Row(): | |
i2v_steps = gr.Slider(minimum=1, maximum=60, step=1, elem_id="i2v_steps", label="Sampling steps", value=50) | |
i2v_motion = gr.Slider(minimum=5, maximum=30, step=1, elem_id="i2v_motion", label="FPS", value=10) | |
control_scale = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, elem_id="i2v_ctrl_scale", label="control_scale", value=0.6) | |
i2v_end_btn = gr.Button("Generate") | |
with gr.Column(): | |
with gr.Row(): | |
i2v_input_sketch = gr.Image(label="Input Image2",elem_id="input_img2") | |
with gr.Row(): | |
i2v_output_video = gr.Video(label="Generated Video",elem_id="output_vid",autoplay=True,show_share_button=True) | |
gr.Examples(examples=i2v_examples_interp_1024, | |
inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale], | |
outputs=[i2v_output_video], | |
fn = get_image, | |
cache_examples=False, | |
) | |
i2v_end_btn.click(inputs=[i2v_input_image, i2v_input_sketch, i2v_input_text, i2v_steps, i2v_cfg_scale, i2v_eta, i2v_motion, i2v_seed, control_scale], | |
outputs=[i2v_output_video], | |
fn = get_image | |
) | |
return dynamicrafter_iface | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
return parser | |
if __name__ == "__main__": | |
parser = get_parser() | |
args = parser.parse_args() | |
result_dir = os.path.join('./', 'results') | |
dynamicrafter_iface = dynamicrafter_demo(result_dir) | |
dynamicrafter_iface.queue(max_size=12) | |
print("launching...") | |
dynamicrafter_iface.launch(max_threads=1, share=True) | |
# dynamicrafter_iface.launch(server_name='0.0.0.0', server_port=12345) | |
# dynamicrafter_iface.launch() | |
# print("launched...") |