Spaces:
Runtime error
Runtime error
import gradio as gr | |
import sahi.utils | |
from sahi import AutoDetectionModel | |
import sahi.predict | |
import sahi.slicing | |
from PIL import Image | |
import numpy | |
IMAGE_SIZE = 640 | |
# Images | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/142730935-2ace3999-a47b-49bb-83e0-2bdd509f1c90.jpg", | |
"apple_tree.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/142730936-1b397756-52e5-43be-a949-42ec0134d5d8.jpg", | |
"highway.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/142742871-bf485f84-0355-43a3-be86-96b44e63c3a2.jpg", | |
"highway2.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://user-images.githubusercontent.com/34196005/142742872-1fefcc4d-d7e6-4c43-bbb7-6b5982f7e4ba.jpg", | |
"highway3.jpg", | |
) | |
# Model | |
model = AutoDetectionModel.from_pretrained( | |
model_type="yolov5", model_path="yolov5s6.pt", device="cpu", confidence_threshold=0.5, image_size=IMAGE_SIZE | |
) | |
def sahi_yolo_inference( | |
image, | |
slice_height=512, | |
slice_width=512, | |
overlap_height_ratio=0.2, | |
overlap_width_ratio=0.2, | |
postprocess_type="NMS", | |
postprocess_match_metric="IOU", | |
postprocess_match_threshold=0.5, | |
postprocess_class_agnostic=False, | |
): | |
image_width, image_height = image.size | |
sliced_bboxes = sahi.slicing.get_slice_bboxes( | |
image_height, | |
image_width, | |
slice_height, | |
slice_width, | |
False, | |
overlap_height_ratio, | |
overlap_width_ratio, | |
) | |
if len(sliced_bboxes) > 60: | |
raise ValueError( | |
f"{len(sliced_bboxes)} slices are too much for huggingface spaces, try smaller slice size." | |
) | |
# standard inference | |
prediction_result_1 = sahi.predict.get_prediction( | |
image=image, detection_model=model | |
) | |
print(image) | |
visual_result_1 = sahi.utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_1.object_prediction_list, | |
) | |
output_1 = Image.fromarray(visual_result_1["image"]) | |
# sliced inference | |
prediction_result_2 = sahi.predict.get_sliced_prediction( | |
image=image, | |
detection_model=model, | |
slice_height=int(slice_height), | |
slice_width=int(slice_width), | |
overlap_height_ratio=overlap_height_ratio, | |
overlap_width_ratio=overlap_width_ratio, | |
postprocess_type=postprocess_type, | |
postprocess_match_metric=postprocess_match_metric, | |
postprocess_match_threshold=postprocess_match_threshold, | |
postprocess_class_agnostic=postprocess_class_agnostic, | |
) | |
visual_result_2 = sahi.utils.cv.visualize_object_predictions( | |
image=numpy.array(image), | |
object_prediction_list=prediction_result_2.object_prediction_list, | |
) | |
output_2 = Image.fromarray(visual_result_2["image"]) | |
return output_1, output_2 | |
inputs = [ | |
gr.Image(type="pil", label="Original Image"), | |
gr.Number(default=512, label="slice_height"), | |
gr.Number(default=512, label="slice_width"), | |
gr.Number(default=0.2, label="overlap_height_ratio"), | |
gr.Number(default=0.2, label="overlap_width_ratio"), | |
gr.Dropdown( | |
["NMS", "GREEDYNMM"], | |
type="value", | |
value="NMS", | |
label="postprocess_type", | |
), | |
gr.Dropdown( | |
["IOU", "IOS"], type="value", default="IOU", label="postprocess_type" | |
), | |
gr.Number(default=0.5, label="postprocess_match_threshold"), | |
gr.Checkbox(default=True, label="postprocess_class_agnostic"), | |
] | |
outputs = [ | |
gr.Image(type="pil", label="YOLOv5s"), | |
gr.Image(type="pil", label="YOLOv5s + SAHI"), | |
] | |
title = "Small Object Detection with SAHI + YOLOv5" | |
description = "SAHI + YOLOv5 demo for small object detection. Upload an image or click an example image to use." | |
article = "<p style='text-align: center'>SAHI is a lightweight vision library for performing large scale object detection/ instance segmentation.. <a href='https://github.com/obss/sahi'>SAHI Github</a> | <a href='https://medium.com/codable/sahi-a-vision-library-for-performing-sliced-inference-on-large-images-small-objects-c8b086af3b80'>SAHI Blog</a> | <a href='https://github.com/fcakyon/yolov5-pip'>YOLOv5 Github</a> </p>" | |
examples = [ | |
["apple_tree.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True], | |
["highway.jpg", 256, 256, 0.2, 0.2, "NMS", "IOU", 0.4, True], | |
["highway2.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True], | |
["highway3.jpg", 512, 512, 0.2, 0.2, "NMS", "IOU", 0.4, True], | |
] | |
gr.Interface( | |
sahi_yolo_inference, | |
inputs, | |
outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
theme="huggingface", | |
cache_examples=True, | |
).launch(debug=True, enable_queue=True) | |