import gradio as gr from transformers import PegasusForConditionalGeneration from tokenizers_pegasus import PegasusTokenizer def summary(name): model = PegasusForConditionalGeneration.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese") tokenizer = PegasusTokenizer.from_pretrained("IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese") inputs = tokenizer(text, max_length=1024, return_tensors="pt") # Generate Summary summary_ids = model.generate(inputs["input_ids"]) return tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] iface = gr.Interface(fn=summary, inputs="text", outputs="text") iface.launch()