File size: 7,342 Bytes
7e0376e 5a25b6c 7e0376e 5a25b6c 7e0376e a9e44d5 7e0376e 5a25b6c 7e0376e 5a483b6 a9e44d5 b88f82b a9e44d5 8c621cb a9e44d5 b88f82b a9e44d5 b88f82b a9e44d5 b88f82b a9e44d5 b88f82b c873cdd a9e44d5 c5f05a9 a9e44d5 0b6b43b 9fdb144 a9e44d5 7e0376e db20d3e 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 5a25b6c 0b6b43b 7e0376e 0b6b43b b88f82b 0b6b43b 7e0376e a9e44d5 0b6b43b 7e0376e a9e44d5 7e0376e 23e4ec1 7e0376e 23e4ec1 7e0376e 0b6b43b 7e0376e 0b6b43b 7e0376e 0b6b43b a9e44d5 0b6b43b a9e44d5 7e0376e 0b6b43b 7e0376e 78efa10 7e0376e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import logging
import os
import shlex
import subprocess
import tempfile
import time
import gradio as gr
import numpy as np
import rembg
import spaces
import torch
from PIL import Image
from functools import partial
subprocess.run(shlex.split('pip install wheel/torchmcubes-0.1.0-cp310-cp310-linux_x86_64.whl'))
from tsr.system import TSR
from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation
HEADER = """
# TripoSR Demo
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:50px;">
<td style="text-align: center;">
<a href="https://stability.ai">
<img src="https://images.squarespace-cdn.com/content/v1/6213c340453c3f502425776e/6c9c4c25-5410-4547-bc26-dc621cdacb25/Stability+AI+logo.png" width="200" height="40" />
</a>
</td>
<td style="text-align: center;">
<a href="https://www.tripo3d.ai">
<img src="https://tripo-public.cdn.bcebos.com/logo.png" width="40" height="40" />
</a>
</td>
</tr>
</table>
<table bgcolor="#1E2432" cellspacing="0" cellpadding="0" width="450">
<tr style="height:30px;">
<td style="text-align: center;">
<a href="https://huggingface.co/stabilityai/TripoSR"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Model_Card-Huggingface-orange" height="20"></a>
</td>
<td style="text-align: center;">
<a href="https://github.com/VAST-AI-Research/TripoSR"><img src="https://postimage.me/images/2024/03/04/GitHub_Logo_White.png" width="100" height="20"></a>
</td>
<td style="text-align: center; color: white;">
<a href="https://arxiv.org/abs/2403.02151"><img src="https://img.shields.io/badge/arXiv-2403.02151-b31b1b.svg" height="20"></a>
</td>
</tr>
</table>
> Try our new model: **SF3D** with several improvements such as faster generation and more game-ready assets.
>
> The model is available [here](https://huggingface.co/stabilityai/stable-fast-3d) and we also have a [demo](https://huggingface.co/spaces/stabilityai/stable-fast-3d).
**TripoSR** is a state-of-the-art open-source model for **fast** feedforward 3D reconstruction from a single image, developed in collaboration between [Tripo AI](https://www.tripo3d.ai/) and [Stability AI](https://stability.ai/).
**Tips:**
1. If you find the result is unsatisfied, please try to change the foreground ratio. It might improve the results.
2. It's better to disable "Remove Background" for the provided examples since they have been already preprocessed.
3. Otherwise, please disable "Remove Background" option only if your input image is RGBA with transparent background, image contents are centered and occupy more than 70% of image width or height.
"""
if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"
model = TSR.from_pretrained(
"stabilityai/TripoSR",
config_name="config.yaml",
weight_name="model.ckpt",
)
model.renderer.set_chunk_size(131072)
model.to(device)
rembg_session = rembg.new_session()
def check_input_image(input_image):
if input_image is None:
raise gr.Error("No image uploaded!")
def preprocess(input_image, do_remove_background, foreground_ratio):
def fill_background(image):
image = np.array(image).astype(np.float32) / 255.0
image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5
image = Image.fromarray((image * 255.0).astype(np.uint8))
return image
if do_remove_background:
image = input_image.convert("RGB")
image = remove_background(image, rembg_session)
image = resize_foreground(image, foreground_ratio)
image = fill_background(image)
else:
image = input_image
if image.mode == "RGBA":
image = fill_background(image)
return image
@spaces.GPU
def generate(image, mc_resolution, formats=["obj", "glb"]):
scene_codes = model(image, device=device)
mesh = model.extract_mesh(scene_codes, resolution=mc_resolution)[0]
mesh = to_gradio_3d_orientation(mesh)
mesh_path_glb = tempfile.NamedTemporaryFile(suffix=f".glb", delete=False)
mesh.export(mesh_path_glb.name)
mesh_path_obj = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False)
mesh.apply_scale([-1, 1, 1]) # Otherwise the visualized .obj will be flipped
mesh.export(mesh_path_obj.name)
return mesh_path_obj.name, mesh_path_glb.name
def run_example(image_pil):
preprocessed = preprocess(image_pil, False, 0.9)
mesh_name_obj, mesh_name_glb = generate(preprocessed, 256, ["obj", "glb"])
return preprocessed, mesh_name_obj, mesh_name_glb
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
input_image = gr.Image(
label="Input Image",
image_mode="RGBA",
sources="upload",
type="pil",
elem_id="content_image",
)
processed_image = gr.Image(label="Processed Image", interactive=False)
with gr.Row():
with gr.Group():
do_remove_background = gr.Checkbox(
label="Remove Background", value=True
)
foreground_ratio = gr.Slider(
label="Foreground Ratio",
minimum=0.5,
maximum=1.0,
value=0.85,
step=0.05,
)
mc_resolution = gr.Slider(
label="Marching Cubes Resolution",
minimum=32,
maximum=320,
value=256,
step=32
)
with gr.Row():
submit = gr.Button("Generate", elem_id="generate", variant="primary")
with gr.Column():
with gr.Tab("OBJ"):
output_model_obj = gr.Model3D(
label="Output Model (OBJ Format)",
interactive=False,
)
gr.Markdown("Note: Downloaded object will be flipped in case of .obj export. Export .glb instead or manually flip it before usage.")
with gr.Tab("GLB"):
output_model_glb = gr.Model3D(
label="Output Model (GLB Format)",
interactive=False,
)
gr.Markdown("Note: The model shown here has a darker appearance. Download to get correct results.")
with gr.Row(variant="panel"):
gr.Examples(
examples=[
os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples"))
],
inputs=[input_image],
outputs=[processed_image, output_model_obj, output_model_glb],
cache_examples=True,
fn=partial(run_example),
label="Examples",
examples_per_page=20
)
submit.click(fn=check_input_image, inputs=[input_image]).success(
fn=preprocess,
inputs=[input_image, do_remove_background, foreground_ratio],
outputs=[processed_image],
).success(
fn=generate,
inputs=[processed_image, mc_resolution],
outputs=[output_model_obj, output_model_glb],
)
demo.queue(max_size=10)
demo.launch()
|