try-this-model / app.py
wxgeorge's picture
:poop: cheesy "de"chatformatization of response.
4c36b18
raw
history blame
6.26 kB
from openai import OpenAI
import gradio as gr
import os
import json
import functools
import random
import datetime
from transformers import AutoTokenizer
reflection_tokenizer = AutoTokenizer.from_pretrained("mattshumer/Reflection-Llama-3.1-70B")
api_key = os.environ.get('FEATHERLESS_API_KEY')
client = OpenAI(
base_url="https://api.featherless.ai/v1",
api_key=api_key
)
def respond(message, history, model):
history_openai_format = []
for human, assistant in history:
history_openai_format.append({"role": "user", "content": human })
history_openai_format.append({"role": "assistant", "content":assistant})
history_openai_format.append({"role": "user", "content": message})
if model == "mattshumer/Reflection-Llama-3.1-70B":
# chat/completions not working for this model;
# apply chat template locally
response = client.completions.create(
model=model,
prompt=reflection_tokenizer.apply_chat_template(history_openai_format, tokenize=False),
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
'X-Title': "HF's missing inference widget"
}
)
# debugger_ran = False
partial_message = ""
for chunk in response:
# if not debugger_ran:
# import code
# code.InteractiveConsole(locals=locals()).interact()
# debugger_ran = True
if chunk.choices[0].text is not None:
partial_message = partial_message + chunk.choices[0].text
prefix_to_strip = "<|start_header_id|>assistant<|end_header_id|>\n\n"
yield partial_message[len(prefix_to_strip):]
else:
response = client.chat.completions.create(
model=model,
messages= history_openai_format,
temperature=1.0,
stream=True,
max_tokens=2000,
extra_headers={
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
'X-Title': "HF's missing inference widget"
}
)
partial_message = ""
for chunk in response:
if chunk.choices[0].delta.content is not None:
partial_message = partial_message + chunk.choices[0].delta.content
yield partial_message
logo = open('./logo.svg').read()
with open('./model-cache.json', 'r') as f_model_cache:
model_cache = json.load(f_model_cache)
model_class_filter = {
"mistral-v02-7b-std-lc": True,
"llama3-8b-8k": True,
"llama2-solar-10b7-4k": True,
"mistral-nemo-12b-lc": True,
"llama2-13b-4k": True,
"llama3-15b-8k": True,
"qwen2-32b-lc":False,
"llama3-70b-8k":False,
"qwen2-72b-lc":False,
"mixtral-8x22b-lc":False,
"llama3-405b-lc":False,
}
def build_model_choices():
all_choices = []
for model_class in model_cache:
if model_class not in model_class_filter:
print(f"Warning: new model class {model_class}. Treating as blacklisted")
continue
if not model_class_filter[model_class]:
continue
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]
# and add one more ...
model_class = "llama3-70b-8k"
model_id = "mattshumer/Reflection-Llama-3.1-70B"
all_choices += [(f"{model_id} ({model_class})", model_id)]
return all_choices
model_choices = build_model_choices()
def initial_model(referer=None):
return "mattshumer/Reflection-Llama-3.1-70B"
# if referer == 'http://127.0.0.1:7860/':
# return 'Sao10K/Venomia-1.1-m7'
# if referer and referer.startswith("https://huggingface.co/"):
# possible_model = referer[23:]
# full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
# model_is_supported = possible_model in full_model_list
# if model_is_supported:
# return possible_model
# # let's use a random but different model each day.
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
# return o.choice(model_choices)[1]
title_text="HuggingFace's missing inference widget"
css = """
.logo-mark { fill: #ffe184; }
/* from https://github.com/gradio-app/gradio/issues/4001
* necessary as putting ChatInterface in gr.Blocks changes behaviour
*/
.contain { display: flex; flex-direction: column; }
.gradio-container { height: 100vh !important; }
#component-0 { height: 100%; }
#chatbot { flex-grow: 1; overflow: auto;}
"""
with gr.Blocks(title_text, css=css) as demo:
gr.HTML("""
<h1 align="center">HuggingFace's missing inference widget</h1>
<p align="center">
Test any <=15B LLM from the hub.
</p>
<h2 align="center">
Please select your model from the list 👇 as HF spaces can't see the refering model card.
</h2>
""")
# hidden_state = gr.State(value=initial_model)
with gr.Row():
model_selector = gr.Dropdown(
label="Select your Model",
choices=build_model_choices(),
value=initial_model,
# value=hidden_state,
scale=4
)
gr.Button(
value="Visit Model Card ↗️",
scale=1
).click(
inputs=[model_selector],
js="(model_selection) => { window.open(`https://huggingface.co/${model_selection}`, '_blank') }",
fn=None,
)
gr.ChatInterface(
respond,
additional_inputs=[model_selector],
head=""",
<script>console.log("Hello from gradio!")</script>
""",
)
gr.HTML(f"""
<p align="center">
Inference by <a href="https://featherless.ai">{logo}</a>
</p>
""")
def update_initial_model_choice(request: gr.Request):
return initial_model(request.headers.get('referer'))
demo.load(update_initial_model_choice, outputs=model_selector)
demo.launch()