:sparkles: support mattshumer's Reflection
Browse files- app.py +67 -32
- model-cache.json +1 -0
app.py
CHANGED
@@ -5,6 +5,9 @@ import json
|
|
5 |
import functools
|
6 |
import random
|
7 |
import datetime
|
|
|
|
|
|
|
8 |
|
9 |
api_key = os.environ.get('FEATHERLESS_API_KEY')
|
10 |
client = OpenAI(
|
@@ -18,24 +21,50 @@ def respond(message, history, model):
|
|
18 |
history_openai_format.append({"role": "user", "content": human })
|
19 |
history_openai_format.append({"role": "assistant", "content":assistant})
|
20 |
history_openai_format.append({"role": "user", "content": message})
|
21 |
-
|
22 |
-
response = client.chat.completions.create(
|
23 |
-
model=model,
|
24 |
-
messages= history_openai_format,
|
25 |
-
temperature=1.0,
|
26 |
-
stream=True,
|
27 |
-
max_tokens=2000,
|
28 |
-
extra_headers={
|
29 |
-
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
|
30 |
-
'X-Title': "HF's missing inference widget"
|
31 |
-
}
|
32 |
-
)
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
logo = open('./logo.svg').read()
|
41 |
|
@@ -69,26 +98,32 @@ def build_model_choices():
|
|
69 |
continue
|
70 |
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]
|
71 |
|
|
|
|
|
|
|
|
|
|
|
72 |
return all_choices
|
73 |
|
74 |
model_choices = build_model_choices()
|
75 |
|
76 |
def initial_model(referer=None):
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
92 |
|
93 |
title_text="HuggingFace's missing inference widget"
|
94 |
css = """
|
|
|
5 |
import functools
|
6 |
import random
|
7 |
import datetime
|
8 |
+
from transformers import AutoTokenizer
|
9 |
+
|
10 |
+
reflection_tokenizer = AutoTokenizer.from_pretrained("mattshumer/Reflection-Llama-3.1-70B")
|
11 |
|
12 |
api_key = os.environ.get('FEATHERLESS_API_KEY')
|
13 |
client = OpenAI(
|
|
|
21 |
history_openai_format.append({"role": "user", "content": human })
|
22 |
history_openai_format.append({"role": "assistant", "content":assistant})
|
23 |
history_openai_format.append({"role": "user", "content": message})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
if model == "mattshumer/Reflection-Llama-3.1-70B":
|
26 |
+
# chat/completions not working for this model;
|
27 |
+
# apply chat template locally
|
28 |
+
response = client.completions.create(
|
29 |
+
model=model,
|
30 |
+
prompt=reflection_tokenizer.apply_chat_template(history_openai_format, tokenize=False),
|
31 |
+
temperature=1.0,
|
32 |
+
stream=True,
|
33 |
+
max_tokens=2000,
|
34 |
+
extra_headers={
|
35 |
+
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
|
36 |
+
'X-Title': "HF's missing inference widget"
|
37 |
+
}
|
38 |
+
)
|
39 |
+
|
40 |
+
# debugger_ran = False
|
41 |
+
partial_message = ""
|
42 |
+
for chunk in response:
|
43 |
+
# if not debugger_ran:
|
44 |
+
# import code
|
45 |
+
# code.InteractiveConsole(locals=locals()).interact()
|
46 |
+
# debugger_ran = True
|
47 |
+
if chunk.choices[0].text is not None:
|
48 |
+
partial_message = partial_message + chunk.choices[0].text
|
49 |
+
yield partial_message
|
50 |
+
else:
|
51 |
+
response = client.chat.completions.create(
|
52 |
+
model=model,
|
53 |
+
messages= history_openai_format,
|
54 |
+
temperature=1.0,
|
55 |
+
stream=True,
|
56 |
+
max_tokens=2000,
|
57 |
+
extra_headers={
|
58 |
+
'HTTP-Referer': 'https://huggingface.co/spaces/featherless-ai/try-this-model',
|
59 |
+
'X-Title': "HF's missing inference widget"
|
60 |
+
}
|
61 |
+
)
|
62 |
+
|
63 |
+
partial_message = ""
|
64 |
+
for chunk in response:
|
65 |
+
if chunk.choices[0].delta.content is not None:
|
66 |
+
partial_message = partial_message + chunk.choices[0].delta.content
|
67 |
+
yield partial_message
|
68 |
|
69 |
logo = open('./logo.svg').read()
|
70 |
|
|
|
98 |
continue
|
99 |
all_choices += [ (f"{model_id} ({model_class})", model_id) for model_id in model_cache[model_class] ]
|
100 |
|
101 |
+
# and add one more ...
|
102 |
+
model_class = "llama3-70b-8k"
|
103 |
+
model_id = "mattshumer/Reflection-Llama-3.1-70B"
|
104 |
+
all_choices += [(f"{model_id} ({model_class})", model_id)]
|
105 |
+
|
106 |
return all_choices
|
107 |
|
108 |
model_choices = build_model_choices()
|
109 |
|
110 |
def initial_model(referer=None):
|
111 |
+
return "mattshumer/Reflection-Llama-3.1-70B"
|
112 |
+
|
113 |
+
# if referer == 'http://127.0.0.1:7860/':
|
114 |
+
# return 'Sao10K/Venomia-1.1-m7'
|
115 |
+
|
116 |
+
# if referer and referer.startswith("https://huggingface.co/"):
|
117 |
+
# possible_model = referer[23:]
|
118 |
+
# full_model_list = functools.reduce(lambda x,y: x+y, model_cache.values(), [])
|
119 |
+
# model_is_supported = possible_model in full_model_list
|
120 |
+
# if model_is_supported:
|
121 |
+
# return possible_model
|
122 |
+
|
123 |
+
# # let's use a random but different model each day.
|
124 |
+
# key=os.environ.get('RANDOM_SEED', 'kcOtfNHA+e')
|
125 |
+
# o = random.Random(f"{key}-{datetime.date.today().strftime('%Y-%m-%d')}")
|
126 |
+
# return o.choice(model_choices)[1]
|
127 |
|
128 |
title_text="HuggingFace's missing inference widget"
|
129 |
css = """
|
model-cache.json
CHANGED
@@ -515,6 +515,7 @@
|
|
515 |
"jondurbin/airoboros-70b-3.3",
|
516 |
"jondurbin/airoboros-dpo-70b-3.3",
|
517 |
"m42-health/Llama3-Med42-70B",
|
|
|
518 |
"meta-llama/Meta-Llama-3-70B-Instruct",
|
519 |
"meta-llama/Meta-Llama-3.1-70B-Instruct",
|
520 |
"migtissera/Llama-3-70B-Synthia-v3.5",
|
|
|
515 |
"jondurbin/airoboros-70b-3.3",
|
516 |
"jondurbin/airoboros-dpo-70b-3.3",
|
517 |
"m42-health/Llama3-Med42-70B",
|
518 |
+
"mattshumer/Reflection-LLama-3.1-70B",
|
519 |
"meta-llama/Meta-Llama-3-70B-Instruct",
|
520 |
"meta-llama/Meta-Llama-3.1-70B-Instruct",
|
521 |
"migtissera/Llama-3-70B-Synthia-v3.5",
|