File size: 10,022 Bytes
556e052
 
 
 
 
 
 
 
b65cb58
 
 
23d5842
 
 
 
 
556e052
 
d9f9497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556e052
23d5842
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556e052
 
 
b65cb58
044c7b5
ad079c2
556e052
69d75f7
 
556e052
 
 
69d75f7
556e052
69d75f7
556e052
 
 
4bd3786
556e052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bd3786
556e052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad079c2
4bd3786
 
556e052
 
 
 
ad079c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556e052
 
23d5842
ad079c2
 
 
 
 
 
 
556e052
ad079c2
 
 
556e052
 
ad079c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
556e052
23d5842
556e052
 
 
ad079c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d5842
ad079c2
 
 
 
23d5842
ad079c2
23d5842
 
 
 
 
 
 
ad079c2
 
556e052
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr
import os
import time

from langchain.document_loaders import OnlinePDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.llms import OpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain import PromptTemplate
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
import requests
from PIL import Image
import torch



# _template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question.
# Chat History:
# {chat_history}
# Follow Up Input: {question}
# Standalone question:"""

# CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)

# template = """
# You are given the following extracted parts of a long document and a question. Provide a short structured answer.
# If you don't know the answer, look on the web. Don't try to make up an answer.
# Question: {question}
# =========
# {context}
# =========
# Answer in Markdown:"""

torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/val/png/20294671002019.png', 'chart_example.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/multi_col_1081.png', 'chart_example_2.png')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/vis-nlp/ChartQA/main/ChartQA%20Dataset/test/png/18143564004789.png', 'chart_example_3.png')
torch.hub.download_url_to_file('https://sharkcoder.com/files/article/matplotlib-bar-plot.png', 'chart_example_4.png')


model_name = "google/matcha-chartqa"
model = Pix2StructForConditionalGeneration.from_pretrained(model_name)
processor = Pix2StructProcessor.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

def filter_output(output):
    return output.replace("<0x0A>", "")

def chart_qa(image, question):
    inputs = processor(images=image, text=question, return_tensors="pt").to(device)
    predictions = model.generate(**inputs, max_new_tokens=512)
    return filter_output(processor.decode(predictions[0], skip_special_tokens=True))

def loading_pdf():
    return "Loading..."


def pdf_changes(pdf_doc, open_ai_key):
    if open_ai_key is not None:
        os.environ['OPENAI_API_KEY'] = open_ai_key
        loader = OnlinePDFLoader(pdf_doc.name)
        documents = loader.load()
        text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
        texts = text_splitter.split_documents(documents)
        embeddings = OpenAIEmbeddings()
        db = Chroma.from_documents(texts, embeddings)
        retriever = db.as_retriever()
        global qa
        qa = ConversationalRetrievalChain.from_llm(
            llm=OpenAI(temperature=0.5), 
            retriever=retriever, 
            return_source_documents=True)
        return "Ready"
    else:
        return "You forgot OpenAI API key"

def add_text(history, text):
    history = history + [(text, None)]
    return history, ""

def bot(history):
    response = infer(history[-1][0], history)
    history[-1][1] = ""
    
    for character in response:     
        history[-1][1] += character
        time.sleep(0.05)
        yield history
    

def infer(question, history):  
    res = []
    for human, ai in history[:-1]:
        pair = (human, ai)
        res.append(pair)
    
    chat_history = res
    #print(chat_history)
    query = question
    result = qa({"question": query, "chat_history": chat_history})
    #print(result)
    return result["answer"]

css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""

title = """
<div style="text-align: center;">
    <h1>YnP LangChain Test </h1>
    <p style="text-align: center;">Please specify OpenAI Key before use</p>
</div>
"""


# with gr.Blocks(css=css) as demo:
#     with gr.Column(elem_id="col-container"):
#         gr.HTML(title)
        
#         with gr.Column():
#             openai_key = gr.Textbox(label="You OpenAI API key", type="password")
#             pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
#             with gr.Row():
#                 langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
#                 load_pdf = gr.Button("Load pdf to langchain")
        
#         chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
#         question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
#         submit_btn = gr.Button("Send Message")
        
#     load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
#     load_pdf.click(pdf_changes, inputs=[pdf_doc, openai_key], outputs=[langchain_status], queue=False)
#     question.submit(add_text, [chatbot, question], [chatbot, question]).then(
#         bot, chatbot, chatbot
#     )
#     submit_btn.click(add_text, [chatbot, question], [chatbot, question]).then(
#         bot, chatbot, chatbot)

# demo.launch()


"""functions"""

def load_file():
    return "Loading..."

def load_xlsx(name):
    import pandas as pd
    
    xls_file = rf'{name}'
    data = pd.read_excel(xls_file)  
    return data

def table_loader(table_file, open_ai_key):
    import os
    from langchain.llms import OpenAI
    from langchain.agents import create_pandas_dataframe_agent    
    from pandas import read_csv
    
    global agent
    if open_ai_key is not None:
        os.environ['OPENAI_API_KEY'] = open_ai_key
    else:
        return "Enter API"
    
    if table_file.name.endswith('.xlsx') or table_file.name.endswith('.xls'):
        data = load_xlsx(table_file.name)
        agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
        return "Ready!"
    elif table_file.name.endswith('.csv'):
        data = read_csv(table_file.name)
        agent = create_pandas_dataframe_agent(OpenAI(temperature=0), data)
        return "Ready!"
    else:
        return "Wrong file format! Upload excel file or csv!"
    
def run(query):
    from langchain.callbacks import get_openai_callback
    
    with get_openai_callback() as cb:
        response = (agent.run(query))
        costs = (f"Total Cost (USD): ${cb.total_cost}")
        output = f'{response} \n {costs}'
        return output
    
def respond(message, chat_history):
    import time
    
    bot_message = run(message)
    chat_history.append((message, bot_message))
    time.sleep(0.5)
    return "", chat_history


with gr.Blocks() as demo:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)
        key = gr.Textbox(
                show_label=False,
                placeholder="Your OpenAI key",
                type = 'password',
                ).style(container=False)

    # PDF processing tab
    with gr.Tab("PDFs"):
        
        with gr.Row(): 
            
            with gr.Column(scale=0.5):
                langchain_status = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_pdf = gr.Button("Load pdf to langchain")
                
            with gr.Column(scale=0.5):
                pdf_doc = gr.File(label="Load a pdf", file_types=['.pdf'], type="file")
                
                
        with gr.Row():
            
            with gr.Column(scale=1): 
                chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350)
                
        with gr.Row():
            
            with gr.Column(scale=0.85):
                question = gr.Textbox(
                show_label=False,
                placeholder="Enter text and press enter, or upload an image",
                ).style(container=False)
                
            with gr.Column(scale=0.15, min_width=0):
                clr_btn = gr.Button("Clear!")
                
    load_pdf.click(loading_pdf, None, langchain_status, queue=False)    
    load_pdf.click(pdf_changes, inputs=[pdf_doc, key], outputs=[langchain_status], queue=True)
    question.submit(add_text, [chatbot, question], [chatbot, question]).then(
        bot, chatbot, chatbot
    )
                
    # XLSX and CSV processing tab
    with gr.Tab("Spreadsheets"):
        with gr.Row(): 
            
            with gr.Column(scale=0.5):
                status_sh = gr.Textbox(label="Status", placeholder="", interactive=False)
                load_table = gr.Button("Load csv|xlsx to langchain")
                
            with gr.Column(scale=0.5):
                raw_table = gr.File(label="Load a table file (xls or csv)", file_types=['.csv, xlsx, xls'], type="file")
                
                
        with gr.Row():
            
            with gr.Column(scale=1): 
                chatbot_sh = gr.Chatbot([], elem_id="chatbot").style(height=350)
                
                
        with gr.Row():
            
            with gr.Column(scale=0.85):
                question_sh = gr.Textbox(
                show_label=False,
                placeholder="Enter text and press enter, or upload an image",
                ).style(container=False)
                
            with gr.Column(scale=0.15, min_width=0):
                clr_btn = gr.Button("Clear!")
            
    load_table.click(load_file, None, status_sh, queue=False)    
    load_table.click(table_loader, inputs=[raw_table, key], outputs=[status_sh], queue=False)
   
    question_sh.submit(respond, [question_sh, chatbot_sh], [question_sh, chatbot_sh])
    clr_btn.click(lambda: None, None, chatbot_sh, queue=False)
    

    with gr.Tab("Charts"):
            image = gr.Image(type="pil", label="Chart")
            question = gr.Textbox(label="Question")
            load_chart = gr.Button("Load chart and question!")
            answer = gr.Textbox(label="Model Output")
            
    load_chart.click(chart_qa, [image, question], answer)

        
demo.queue(concurrency_count=3)
demo.launch()