Spaces:
Running
on
Zero
Running
on
Zero
""" | |
Script based on: | |
Wang, Xueliang, Honge Ren, and Achuan Wang. | |
"Smish: A Novel Activation Function for Deep Learning Methods. | |
" Electronics 11.4 (2022): 540. | |
smish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + sigmoid(x))) | |
""" | |
# import pytorch | |
# import activation functions | |
from torch import nn | |
from .Fsmish import smish | |
class Smish(nn.Module): | |
""" | |
Applies the mish function element-wise: | |
mish(x) = x * tanh(softplus(x)) = x * tanh(ln(1 + exp(x))) | |
Shape: | |
- Input: (N, *) where * means, any number of additional | |
dimensions | |
- Output: (N, *), same shape as the input | |
Examples: | |
>>> m = Mish() | |
>>> input = torch.randn(2) | |
>>> output = m(input) | |
Reference: https://pytorch.org/docs/stable/generated/torch.nn.Mish.html | |
""" | |
def __init__(self): | |
""" | |
Init method. | |
""" | |
super().__init__() | |
def forward(self, input): | |
""" | |
Forward pass of the function. | |
""" | |
return smish(input) | |