Spaces:
Sleeping
Sleeping
felipekitamura
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import lightning
|
3 |
+
import numpy as np
|
4 |
+
import os
|
5 |
+
import pandas as pd
|
6 |
+
import timm
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
from torch.utils.data import Dataset, DataLoader
|
11 |
+
|
12 |
+
BACKBONE = "resnet18d"
|
13 |
+
IMAGE_HEIGHT, IMAGE_WIDTH = 512, 512
|
14 |
+
|
15 |
+
trained_weights_path = "epoch=009.ckpt"
|
16 |
+
trained_weights = torch.load(trained_weights_path, map_location=torch.device('cpu'))["state_dict"]
|
17 |
+
|
18 |
+
# recreate the model
|
19 |
+
class BoneAgeModel(lightning.LightningModule):
|
20 |
+
|
21 |
+
def __init__(self, net, optimizer, scheduler, loss_fn):
|
22 |
+
super().__init__()
|
23 |
+
self.net = net
|
24 |
+
self.optimizer = optimizer
|
25 |
+
self.scheduler = scheduler
|
26 |
+
self.loss_fn = loss_fn
|
27 |
+
|
28 |
+
self.val_losses = []
|
29 |
+
|
30 |
+
def training_step(self, batch, batch_index):
|
31 |
+
out = self.net(batch["x"])
|
32 |
+
loss = self.loss_fn(out, batch["y"])
|
33 |
+
return loss
|
34 |
+
|
35 |
+
def validation_step(self, batch, batch_index):
|
36 |
+
out = self.net(batch["x"])
|
37 |
+
loss = self.loss_fn(out, batch["y"])
|
38 |
+
self.val_losses.append(loss.item())
|
39 |
+
|
40 |
+
def on_validation_epoch_end(self, *args, **kwargs):
|
41 |
+
val_loss = np.mean(self.val_losses)
|
42 |
+
self.val_losses = []
|
43 |
+
print(f"Validation Loss : {val_loss:0.3f}")
|
44 |
+
|
45 |
+
def configure_optimizers(self):
|
46 |
+
lr_scheduler = {"scheduler": self.scheduler, "interval": "step"}
|
47 |
+
return {"optimizer": self.optimizer, "lr_scheduler": lr_scheduler}
|
48 |
+
|
49 |
+
net = timm.create_model(BACKBONE, pretrained=True, in_chans=1, num_classes=1)
|
50 |
+
trained_model = BoneAgeModel(net, None, None, None)
|
51 |
+
trained_model.load_state_dict(trained_weights)
|
52 |
+
trained_model.eval()
|
53 |
+
|
54 |
+
|
55 |
+
def predict_bone_age(Radiograph):
|
56 |
+
img = torch.from_numpy(Radiograph)
|
57 |
+
img = img.unsqueeze(0).unsqueeze(0) # add channel and batch dimensions
|
58 |
+
img = img / 255. # use same normalization as in the PyTorch dataset
|
59 |
+
with torch.inference_mode():
|
60 |
+
bone_age = trained_model.net(img)[0].item()
|
61 |
+
years = int(bone_age)
|
62 |
+
months = round((bone_age - years) * 12)
|
63 |
+
return f"Predicted Bone Age: {years} years, {months} months"
|
64 |
+
|
65 |
+
|
66 |
+
image = gr.Image(height=IMAGE_HEIGHT, width=IMAGE_WIDTH, image_mode="L") # L for grayscale
|
67 |
+
label = gr.Label(show_label=True, label="Bone Age Prediction")
|
68 |
+
|
69 |
+
demo = gr.Interface(fn=predict_bone_age,
|
70 |
+
inputs=[image],
|
71 |
+
outputs=label)
|
72 |
+
|
73 |
+
demo.launch(debug=True)
|