review2024fall / app.py
felixwf's picture
Update app.py
dae8411 verified
raw
history blame
3.08 kB
import streamlit as st
from transformers import pipeline
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
import torch
import numpy as np
def main():
st.title("yelp2024fall Test")
st.write("Enter a sentence for analysis:")
user_input = st.text_input("")
if user_input:
# Approach: AutoModel
model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2024fall",
num_labels=5)
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
inputs = tokenizer(user_input,
padding=True,
truncation=True,
return_tensors='pt')
outputs = model2(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
predictions = predictions.cpu().detach().numpy()
# Get the index of the largest output value
max_index = np.argmax(predictions)
st.write(f"result (AutoModel) - Label: {max_index}")
if __name__ == "__main__":
main()
# import streamlit as st
# from transformers import pipeline
# # img2text
# def img2text(url):
# image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
# text = image_to_text_model(url)[0]["generated_text"]
# print(text)
# return text
# # txt2Story
# def txt2story(text):
# pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
# story_txt = pipe(text)[0]['generated_text']
# print(story_txt)
# return story_txt
# # Story2Audio
# def text2audio(story_text):
# pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng")
# audio_data = pipe(story_text)
# return audio_data
# def main():
# st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜")
# st.header("Turn Your Image to Audio Story")
# uploaded_file = st.file_uploader("Select an Image...")
# if uploaded_file is not None:
# print(uploaded_file)
# bytes_data = uploaded_file.getvalue()
# with open(uploaded_file.name, "wb") as file:
# file.write(bytes_data)
# st.image(uploaded_file, caption="Uploaded Image", use_column_width=True)
# #Stage 1: Image to Text
# st.text('Processing img2text...')
# scenario = img2text(uploaded_file.name)
# st.write(scenario)
# #Stage 2: Text to Story
# st.text('Generating a story...')
# story = txt2story(scenario)
# st.write(story)
# #Stage 3: Story to Audio data
# st.text('Generating audio data...')
# audio_data =text2audio(story)
# # Play button
# if st.button("Play Audio"):
# st.audio(audio_data['audio'],
# format="audio/wav",
# start_time=0,
# sample_rate = audio_data['sampling_rate'])
# if __name__ == "__main__":
# main()