import streamlit as st from transformers import pipeline from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer import torch import numpy as np def main(): st.title("yelp2024fall Test") st.write("Enter a sentence for analysis:") user_input = st.text_input("") if user_input: # Approach: AutoModel model2 = AutoModelForSequenceClassification.from_pretrained("isom5240/CustomModel_yelp2024fall", num_labels=5) tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") inputs = tokenizer(user_input, padding=True, truncation=True, return_tensors='pt') outputs = model2(**inputs) predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) predictions = predictions.cpu().detach().numpy() # Get the index of the largest output value max_index = np.argmax(predictions) st.write(f"result (AutoModel) - Label: {max_index}") if __name__ == "__main__": main() # import streamlit as st # from transformers import pipeline # # img2text # def img2text(url): # image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") # text = image_to_text_model(url)[0]["generated_text"] # print(text) # return text # # txt2Story # def txt2story(text): # pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") # story_txt = pipe(text)[0]['generated_text'] # print(story_txt) # return story_txt # # Story2Audio # def text2audio(story_text): # pipe = pipeline("text-to-audio", model="Matthijs/mms-tts-eng") # audio_data = pipe(story_text) # return audio_data # def main(): # st.set_page_config(page_title="Your Image to Audio Story", page_icon="🦜") # st.header("Turn Your Image to Audio Story") # uploaded_file = st.file_uploader("Select an Image...") # if uploaded_file is not None: # print(uploaded_file) # bytes_data = uploaded_file.getvalue() # with open(uploaded_file.name, "wb") as file: # file.write(bytes_data) # st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) # #Stage 1: Image to Text # st.text('Processing img2text...') # scenario = img2text(uploaded_file.name) # st.write(scenario) # #Stage 2: Text to Story # st.text('Generating a story...') # story = txt2story(scenario) # st.write(story) # #Stage 3: Story to Audio data # st.text('Generating audio data...') # audio_data =text2audio(story) # # Play button # if st.button("Play Audio"): # st.audio(audio_data['audio'], # format="audio/wav", # start_time=0, # sample_rate = audio_data['sampling_rate']) # if __name__ == "__main__": # main()