Spaces:
Runtime error
Runtime error
from transformers import AlbertTokenizer, AlbertModel | |
from sklearn.metrics.pairwise import cosine_similarity | |
import torch | |
#This is a quick evaluation to see if B | |
# base | |
# large | |
tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') | |
model = AlbertModel.from_pretrained("albert-base-v2") | |
a1 = "65 Mountain Blvd Ext, Warren, NJ 07059" | |
a2 = "112 Mountain Blvd Ext, Warren, NJ 07059" | |
a3 = "1677 NJ-27 #2, Edison, NJ 08817" | |
a4 = "5078 S Maryland Pkwy, Las Vegas, NV 89119" | |
a5 = "65 Mountain Boulevard Ext, Warren, NJ 07059" | |
a6 = "123 Broad St, New York, NY, 10304-2345" | |
def get_embedding(input_text): | |
encoded_input = tokenizer(input_text, return_tensors='pt') | |
input_ids = encoded_input.input_ids | |
input_num_tokens = input_ids.shape[1] | |
print( "Number of input tokens: " + str(input_num_tokens)) | |
print("Length of input: " + str(len(input_text))) | |
list_of_tokens = tokenizer.convert_ids_to_tokens(input_ids.view(-1).tolist()) | |
print( "Tokens : " + ' '.join(list_of_tokens)) | |
with torch.no_grad(): | |
outputs = model(**encoded_input) | |
last_hidden_states = outputs[0] | |
sentence_embedding = torch.mean(last_hidden_states[0], dim=0) | |
#sentence_embedding = output.last_hidden_state[0][0] | |
return sentence_embedding.tolist() | |
e1 = get_embedding(a1) | |
e2 = get_embedding(a2) | |
#e3 = get_embedding(a3) | |
e4 = get_embedding(a4) | |
e5 = get_embedding(a5) | |
e6 = get_embedding(a6) | |
print(f"a1 \"{a1}\" to \"{a2}\" a2") | |
print(cosine_similarity([e1], [e2])) | |
print(f"a1 \"{a1}\" to \"{a4}\" a4") | |
print(cosine_similarity([e1], [e4])) | |
print(f"a1 \"{a1}\" to \"{a5}\" a5") | |
print(cosine_similarity([e1], [e5])) | |
# with base | |
#a1 to a2 | |
#[[0.99512167]] | |
#a1 to a4 | |
#[[0.94850088]] | |
#a1 to a5 | |
#[[0.99636901]] | |
# with large | |
#a1 to a2 | |
#[[0.99682108]] | |
#a1 to a4 | |
#[[0.94006972]] | |
#a1 to a5 | |
#[[0.99503919]] |