Spaces:
Runtime error
Runtime error
felix
commited on
Commit
·
01a5a51
1
Parent(s):
55d3f7a
improvements
Browse files- Addr-Test.xlsx +0 -0
- app.py +15 -4
Addr-Test.xlsx
DELETED
Binary file (11 kB)
|
|
app.py
CHANGED
@@ -4,6 +4,7 @@ import pandas as pd
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from transformers import AlbertTokenizer, AlbertModel
|
|
|
7 |
from sklearn.metrics.pairwise import cosine_similarity
|
8 |
from io import BytesIO
|
9 |
|
@@ -12,6 +13,14 @@ model_size='base'
|
|
12 |
tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2')
|
13 |
model = AlbertModel.from_pretrained('albert-' + model_size + '-v2')
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def get_embedding(input_text):
|
16 |
encoded_input = tokenizer(input_text, return_tensors='pt')
|
17 |
input_ids = encoded_input.input_ids
|
@@ -31,7 +40,7 @@ def get_embedding(input_text):
|
|
31 |
#sentence_embedding = output.last_hidden_state[0][0]
|
32 |
return sentence_embedding.tolist()
|
33 |
|
34 |
-
st.
|
35 |
st.title('Upload the Address Dataset')
|
36 |
|
37 |
st.markdown('Upload an Excel file to view the data in a table.')
|
@@ -92,7 +101,7 @@ if uploaded_file is not None:
|
|
92 |
end = num_items
|
93 |
stop_iter = True
|
94 |
|
95 |
-
data_caqh.iloc[start:end, embedding_col_index] = data_caqh.iloc[start:end, full_addr_col_index].apply(
|
96 |
|
97 |
progress_bar.progress(value=progress, text=f"CAQH embeddings: {(i + 1) * step_size} processed out of {num_items}")
|
98 |
|
@@ -123,7 +132,8 @@ if uploaded_file is not None:
|
|
123 |
end = num_items
|
124 |
stop_iter = True
|
125 |
|
126 |
-
|
|
|
127 |
|
128 |
progress_bar.progress(value=progress, text=f"NDB embeddings: {(i + 1) * step_size} processed out of {num_items}")
|
129 |
|
@@ -142,10 +152,11 @@ if uploaded_file is not None:
|
|
142 |
if sim > max_similarity:
|
143 |
max_similarity = sim
|
144 |
matched_row = ndb_row
|
145 |
-
if max_similarity >=
|
146 |
data_caqh.at[i, 'matched-addr'] = matched_row['full-addr']
|
147 |
data_caqh.at[i, 'similarity-score'] = max_similarity
|
148 |
else:
|
|
|
149 |
data_caqh.at[i, 'matched-addr'] = 'No Matches'
|
150 |
|
151 |
progress = i / num_items
|
|
|
4 |
import numpy as np
|
5 |
import torch
|
6 |
from transformers import AlbertTokenizer, AlbertModel
|
7 |
+
from sentence_transformers import SentenceTransformer
|
8 |
from sklearn.metrics.pairwise import cosine_similarity
|
9 |
from io import BytesIO
|
10 |
|
|
|
13 |
tokenizer = AlbertTokenizer.from_pretrained('albert-' + model_size + '-v2')
|
14 |
model = AlbertModel.from_pretrained('albert-' + model_size + '-v2')
|
15 |
|
16 |
+
model_sbert = SentenceTransformer('sentence-transformers/paraphrase-albert-base-v2')
|
17 |
+
# for regular burt 0.98
|
18 |
+
similarity_threshold = 0.9
|
19 |
+
|
20 |
+
def get_sbert_embedding(input_text):
|
21 |
+
embedding = model_sbert.encode(input_text)
|
22 |
+
return embedding.tolist()
|
23 |
+
|
24 |
def get_embedding(input_text):
|
25 |
encoded_input = tokenizer(input_text, return_tensors='pt')
|
26 |
input_ids = encoded_input.input_ids
|
|
|
40 |
#sentence_embedding = output.last_hidden_state[0][0]
|
41 |
return sentence_embedding.tolist()
|
42 |
|
43 |
+
st.set_page_config(layout="wide")
|
44 |
st.title('Upload the Address Dataset')
|
45 |
|
46 |
st.markdown('Upload an Excel file to view the data in a table.')
|
|
|
101 |
end = num_items
|
102 |
stop_iter = True
|
103 |
|
104 |
+
data_caqh.iloc[start:end, embedding_col_index] = data_caqh.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding)
|
105 |
|
106 |
progress_bar.progress(value=progress, text=f"CAQH embeddings: {(i + 1) * step_size} processed out of {num_items}")
|
107 |
|
|
|
132 |
end = num_items
|
133 |
stop_iter = True
|
134 |
|
135 |
+
# or get_embedding
|
136 |
+
data_ndb.iloc[start:end, embedding_col_index] = data_ndb.iloc[start:end, full_addr_col_index].apply(get_sbert_embedding)
|
137 |
|
138 |
progress_bar.progress(value=progress, text=f"NDB embeddings: {(i + 1) * step_size} processed out of {num_items}")
|
139 |
|
|
|
152 |
if sim > max_similarity:
|
153 |
max_similarity = sim
|
154 |
matched_row = ndb_row
|
155 |
+
if max_similarity >= similarity_threshold:
|
156 |
data_caqh.at[i, 'matched-addr'] = matched_row['full-addr']
|
157 |
data_caqh.at[i, 'similarity-score'] = max_similarity
|
158 |
else:
|
159 |
+
print(f"max similarity was {max_similarity}")
|
160 |
data_caqh.at[i, 'matched-addr'] = 'No Matches'
|
161 |
|
162 |
progress = i / num_items
|