Spaces:
Runtime error
Runtime error
import logging | |
import os | |
from pathlib import Path | |
from typing import List, Tuple | |
import gradio as gr | |
import pandas as pd | |
import spacy | |
import torch | |
from dante_tokenizer import DanteTokenizer | |
from transformers import AutoModelForTokenClassification, AutoTokenizer | |
from preprocessing import * | |
try: | |
nlp = spacy.load("pt_core_news_sm") | |
except Exception: | |
os.system("python -m spacy download pt_core_news_sm") | |
nlp = spacy.load("pt_core_news_sm") | |
dt_tokenizer = DanteTokenizer() | |
default_model = "Tweets (stock market)" | |
model_choices = { | |
"News": "Emanuel/porttagger-news-base", | |
"Tweets (stock market)": "Emanuel/porttagger-tweets-base", | |
"Oil and Gas (academic texts)": "Emanuel/porttagger-oilgas-base", | |
"Multigenre": "Emanuel/porttagger-base", | |
} | |
pre_tokenizers = { | |
"News": nlp, | |
"Tweets (stock market)": dt_tokenizer.tokenize, | |
"Oil and Gas (academic texts)": nlp, | |
"Multigenre": nlp, | |
} | |
logger = logging.getLogger() | |
logger.setLevel(logging.DEBUG) | |
class MyApp: | |
def __init__(self) -> None: | |
self.model = None | |
self.tokenizer = None | |
self.pre_tokenizer = None | |
self.load_model() | |
def load_model(self, model_name: str = default_model): | |
if model_name not in model_choices.keys(): | |
logger.error("Selected model is not supported, resetting to the default model.") | |
model_name = default_model | |
self.model = AutoModelForTokenClassification.from_pretrained(model_choices[model_name]) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_choices[model_name]) | |
self.pre_tokenizer = pre_tokenizers[model_name] | |
myapp = MyApp() | |
def predict(text, logger=None) -> Tuple[List[str], List[str]]: | |
doc = myapp.pre_tokenizer(text) | |
tokens = [token.text if not isinstance(token, str) else token for token in doc] | |
logger.info("Starting predictions for sentence: {}".format(text)) | |
print("Using model {}".format(myapp.model.config.__dict__["_name_or_path"])) | |
input_tokens = myapp.tokenizer( | |
tokens, | |
return_tensors="pt", | |
is_split_into_words=True, | |
return_offsets_mapping=True, | |
return_special_tokens_mask=True, | |
) | |
output = myapp.model(input_tokens["input_ids"]) | |
i_token = 0 | |
labels = [] | |
scores = [] | |
for off, is_special_token, pred in zip( | |
input_tokens["offset_mapping"][0], | |
input_tokens["special_tokens_mask"][0], | |
output.logits[0], | |
): | |
if is_special_token or off[0] > 0: | |
continue | |
label = myapp.model.config.__dict__["id2label"][int(pred.argmax(axis=-1))] | |
if logger is not None: | |
logger.info("{}, {}, {}".format(off, tokens[i_token], label)) | |
labels.append(label) | |
scores.append( | |
"{:.2f}".format(100 * float(torch.softmax(pred, dim=-1).detach().max())) | |
) | |
i_token += 1 | |
return tokens, labels, scores | |
def batch_analysis_csv(input_file, id_column: str='tweet_id', content_column: str='content', prefix: str='dante_02', keep_replace_contraction=True): | |
df = pd.read_csv(input_file.name, encoding='utf-8') | |
ids = df[id_column] | |
texts = df[content_column] | |
texts = texts.replace(r'\\n', ' ', regex=True) | |
texts = texts.apply(lambda x : x.strip()) | |
conllu_output = [] | |
for id, sent in zip(ids, texts): | |
conllu_output.append("# sent_id = {}_{}\n".format(prefix, id)) | |
conllu_output.append("# text = {}\n".format(sent)) | |
tokens, labels, _ = predict(sent, logger) | |
tokens_labels = list(zip(tokens, labels)) | |
for j, (token, label) in enumerate(tokens_labels): | |
try: | |
contr = tokens_labels[j][0] + ' ' + tokens_labels[j+1][0] | |
for expansion in expansions.keys(): | |
replace_str = expansions[expansion] | |
match = re.match(expansion, contr, re.I) | |
expansion = replace_keep_case(expansion, replace_str, contr) | |
if match is not None: | |
conllu_output.append("{}\t{}".format(str(j+1)+'-'+str(j+2), expansion) + "\t_" * 8 + "\n") | |
break | |
conllu_output.append("{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 6 + "\n") | |
except IndexError: | |
conllu_output.append("{}\t{}\t_\t{}".format(j + 1, token, label) + "\t_" * 6 + "\n") | |
conllu_output.append("\n") | |
output_filename = "output.conllu" | |
with open(output_filename, "w", encoding='utf-8') as out_f: | |
out_f.writelines(conllu_output) | |
return {output_file: output_file.update(visible=True, value=output_filename)} | |
css = open("style.css").read() | |
top_html = open("top.html").read() | |
bottom_html = open("bottom.html").read() | |
with gr.Blocks(css=css) as demo: | |
gr.HTML(top_html) | |
select_model = gr.Dropdown(choices=list(model_choices.keys()), label="Tagger model", value=default_model) | |
select_model.change(myapp.load_model, inputs=[select_model]) | |
id_column = gr.Textbox(placeholder='tweet_id', label='Id column') | |
content_column = gr.Textbox(placeholder='content', label='Content column') | |
label_prefix = gr.Textbox(placeholder='dante_02', label='Label prefix') | |
with gr.Tab("Multiple sentences"): | |
gr.HTML( | |
""" | |
<p align="justify""> | |
 Upload a plain text file with sentences in it. | |
Find below an example of what we expect the content of the file to look like. | |
Sentences are automatically split by spaCy's sentencizer. | |
To force an explicit segmentation, manually separate the sentences using a new line for each one.</p> | |
""" | |
) | |
gr.Markdown( | |
""" | |
``` | |
Então ele hesitou, quase como se estivesse surpreso com as próprias palavras, e recitou: | |
– Vá e não tornes a pecar! | |
Baley, sorrindo de repente, pegou no cotovelo de R. Daneel e eles saíram juntos pela porta. | |
``` | |
""" | |
) | |
input_file = gr.File(label="Upload your input file here...") | |
output_file = gr.File(label="Tagged file", visible=False) | |
submit_btn_batch = gr.Button("Tag it") | |
submit_btn_batch.click( | |
fn=batch_analysis_csv, inputs=[input_file, id_column], outputs=output_file | |
) | |
gr.HTML(bottom_html) | |
demo.launch(debug=True) |