Spaces:
Sleeping
Sleeping
Fer Aguirre
commited on
Commit
•
998cded
1
Parent(s):
b0f265a
Initial commit
Browse files- app.py +86 -0
- foia_sample.csv +0 -0
- requirements.txt +129 -0
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from datasets import Dataset
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from sentence_transformers.util import semantic_search
|
6 |
+
import torch
|
7 |
+
|
8 |
+
model = SentenceTransformer("sentence-transformers/gtr-t5-large")
|
9 |
+
|
10 |
+
|
11 |
+
# Read files
|
12 |
+
url = "https://gist.githubusercontent.com/fer-aguirre/b6bdcf59ecae41f84765f72114de9fd1/raw/b4e029fe236c1f38275621686429b2c7aaa3d18b/embeddings.csv"
|
13 |
+
|
14 |
+
df_emb = pd.read_csv(url, index_col=0)
|
15 |
+
|
16 |
+
df = pd.read_csv('./foia_sample.csv')
|
17 |
+
|
18 |
+
dataset = Dataset.from_pandas(df_emb)
|
19 |
+
|
20 |
+
dataset_embeddings = torch.from_numpy(dataset.to_pandas().to_numpy()).to(torch.float)
|
21 |
+
|
22 |
+
st.markdown("**Inserta una solicitud de información para generar recomendaciones de dependencias**")
|
23 |
+
|
24 |
+
if request := st.text_area("", value=""):
|
25 |
+
|
26 |
+
output = model.encode(request)
|
27 |
+
|
28 |
+
query_embeddings = torch.FloatTensor(output)
|
29 |
+
|
30 |
+
hits = semantic_search(query_embeddings, dataset_embeddings, top_k=3)
|
31 |
+
|
32 |
+
id1 = hits[0][0]['corpus_id']
|
33 |
+
id2 = hits[0][1]['corpus_id']
|
34 |
+
id3 = hits[0][2]['corpus_id']
|
35 |
+
|
36 |
+
rec1 = df.iloc[id1].str.split(pat="/")[0]
|
37 |
+
rec2 = df.iloc[id2].str.split(pat="/")[0]
|
38 |
+
rec3 = df.iloc[id3].str.split(pat="/")[0]
|
39 |
+
|
40 |
+
list_rec = [rec1, rec2, rec3]
|
41 |
+
unique_list = []
|
42 |
+
for string in list_rec:
|
43 |
+
if string not in unique_list:
|
44 |
+
unique_list.append(string)
|
45 |
+
st.markdown(f'Recomendaciones:')
|
46 |
+
for rec in unique_list:
|
47 |
+
st.markdown(f':green[{rec[0]}]')
|
48 |
+
|
49 |
+
st.markdown("""---""")
|
50 |
+
|
51 |
+
if st.button('Genera un ejemplo random'):
|
52 |
+
|
53 |
+
test_example = df['combined'].sample(n=1)
|
54 |
+
index = test_example.index
|
55 |
+
idx = index[0]
|
56 |
+
|
57 |
+
original = df.iloc[idx].str.split(pat="/")[0]
|
58 |
+
|
59 |
+
request = test_example.to_string(index=False)
|
60 |
+
|
61 |
+
st.text(f'{idx}, {request}')
|
62 |
+
|
63 |
+
output = model.encode(request)
|
64 |
+
|
65 |
+
query_embeddings = torch.FloatTensor(output)
|
66 |
+
|
67 |
+
hits = semantic_search(query_embeddings, dataset_embeddings, top_k=3)
|
68 |
+
|
69 |
+
id1 = hits[0][0]['corpus_id']
|
70 |
+
id2 = hits[0][1]['corpus_id']
|
71 |
+
id3 = hits[0][2]['corpus_id']
|
72 |
+
|
73 |
+
rec1 = df.iloc[id1].str.split(pat="/")[0]
|
74 |
+
rec2 = df.iloc[id2].str.split(pat="/")[0]
|
75 |
+
rec3 = df.iloc[id3].str.split(pat="/")[0]
|
76 |
+
|
77 |
+
list_rec = [rec1, rec2, rec3]
|
78 |
+
unique_list = []
|
79 |
+
for string in list_rec:
|
80 |
+
if string not in unique_list:
|
81 |
+
unique_list.append(string)
|
82 |
+
st.markdown(f'Recomendaciones:')
|
83 |
+
for rec in unique_list:
|
84 |
+
st.markdown(f':green[{rec[0]}]')
|
85 |
+
st.markdown(f'Dependencia original:')
|
86 |
+
st.markdown(f':red[{original[0]}]')
|
foia_sample.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
requirements.txt
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-e git+ssh://git@github.com/fer-aguirre/ai4foia.git@3469e89044d7f0ccfb440fb5762fd7cbd893fa82#egg=AI4FOIA
|
2 |
+
aiohttp==3.8.4
|
3 |
+
aiosignal==1.3.1
|
4 |
+
altair==4.2.2
|
5 |
+
asttokens==2.2.1
|
6 |
+
async-timeout==4.0.2
|
7 |
+
attrs==22.2.0
|
8 |
+
backcall==0.2.0
|
9 |
+
backports.zoneinfo==0.2.1
|
10 |
+
blinker==1.5
|
11 |
+
cachetools==5.3.0
|
12 |
+
certifi==2022.12.7
|
13 |
+
charset-normalizer==3.1.0
|
14 |
+
click==8.1.3
|
15 |
+
cmake==3.26.1
|
16 |
+
comm==0.1.3
|
17 |
+
datasets==2.11.0
|
18 |
+
debugpy==1.6.6
|
19 |
+
decorator==5.1.1
|
20 |
+
dill==0.3.6
|
21 |
+
distlib==0.3.6
|
22 |
+
entrypoints==0.4
|
23 |
+
executing==1.2.0
|
24 |
+
fastjsonschema==2.16.3
|
25 |
+
filelock==3.10.7
|
26 |
+
frozenlist==1.3.3
|
27 |
+
fsspec==2023.3.0
|
28 |
+
gitdb==4.0.10
|
29 |
+
GitPython==3.1.31
|
30 |
+
huggingface-hub==0.13.3
|
31 |
+
idna==3.4
|
32 |
+
importlib-metadata==6.1.0
|
33 |
+
importlib-resources==5.12.0
|
34 |
+
ipykernel==6.22.0
|
35 |
+
ipython==8.12.0
|
36 |
+
jedi==0.18.2
|
37 |
+
Jinja2==3.1.2
|
38 |
+
joblib==1.2.0
|
39 |
+
jsonschema==4.17.3
|
40 |
+
jupyter_client==8.1.0
|
41 |
+
jupyter_core==5.3.0
|
42 |
+
lit==16.0.0
|
43 |
+
markdown-it-py==2.2.0
|
44 |
+
MarkupSafe==2.1.2
|
45 |
+
matplotlib-inline==0.1.6
|
46 |
+
mdurl==0.1.2
|
47 |
+
mpmath==1.3.0
|
48 |
+
multidict==6.0.4
|
49 |
+
multiprocess==0.70.14
|
50 |
+
nbformat==5.8.0
|
51 |
+
nest-asyncio==1.5.6
|
52 |
+
networkx==3.0
|
53 |
+
nltk==3.8.1
|
54 |
+
numpy==1.24.2
|
55 |
+
nvidia-cublas-cu11==11.10.3.66
|
56 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
57 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
58 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
59 |
+
nvidia-cudnn-cu11==8.5.0.96
|
60 |
+
nvidia-cufft-cu11==10.9.0.58
|
61 |
+
nvidia-curand-cu11==10.2.10.91
|
62 |
+
nvidia-cusolver-cu11==11.4.0.1
|
63 |
+
nvidia-cusparse-cu11==11.7.4.91
|
64 |
+
nvidia-nccl-cu11==2.14.3
|
65 |
+
nvidia-nvtx-cu11==11.7.91
|
66 |
+
packaging==23.0
|
67 |
+
pandas==1.5.3
|
68 |
+
parso==0.8.3
|
69 |
+
pathlib==1.0.1
|
70 |
+
pbr==5.11.1
|
71 |
+
pexpect==4.8.0
|
72 |
+
pickleshare==0.7.5
|
73 |
+
Pillow==9.5.0
|
74 |
+
pipenv==2023.3.20
|
75 |
+
pkgutil_resolve_name==1.3.10
|
76 |
+
platformdirs==3.2.0
|
77 |
+
prompt-toolkit==3.0.38
|
78 |
+
protobuf==3.20.3
|
79 |
+
psutil==5.9.4
|
80 |
+
ptyprocess==0.7.0
|
81 |
+
pure-eval==0.2.2
|
82 |
+
pyarrow==11.0.0
|
83 |
+
pydeck==0.8.0
|
84 |
+
Pygments==2.14.0
|
85 |
+
Pympler==1.0.1
|
86 |
+
pyprojroot==0.3.0
|
87 |
+
pyrsistent==0.19.3
|
88 |
+
python-dateutil==2.8.2
|
89 |
+
pytz==2023.3
|
90 |
+
pytz-deprecation-shim==0.1.0.post0
|
91 |
+
PyYAML==6.0
|
92 |
+
pyzmq==25.0.2
|
93 |
+
regex==2023.3.23
|
94 |
+
requests==2.28.2
|
95 |
+
responses==0.18.0
|
96 |
+
rich==13.3.3
|
97 |
+
scikit-learn==1.2.2
|
98 |
+
scipy==1.10.1
|
99 |
+
semver==2.13.0
|
100 |
+
sentence-transformers==2.2.2
|
101 |
+
sentencepiece==0.1.97
|
102 |
+
six==1.16.0
|
103 |
+
smmap==5.0.0
|
104 |
+
stack-data==0.6.2
|
105 |
+
streamlit==1.20.0
|
106 |
+
sympy==1.11.1
|
107 |
+
threadpoolctl==3.1.0
|
108 |
+
tokenizers==0.13.2
|
109 |
+
toml==0.10.2
|
110 |
+
toolz==0.12.0
|
111 |
+
torch==2.0.0
|
112 |
+
torchvision==0.15.1
|
113 |
+
tornado==6.2
|
114 |
+
tqdm==4.65.0
|
115 |
+
traitlets==5.9.0
|
116 |
+
transformers==4.27.4
|
117 |
+
triton==2.0.0
|
118 |
+
typing_extensions==4.5.0
|
119 |
+
tzdata==2023.3
|
120 |
+
tzlocal==4.3
|
121 |
+
urllib3==1.26.15
|
122 |
+
validators==0.20.0
|
123 |
+
virtualenv==20.21.0
|
124 |
+
virtualenv-clone==0.5.7
|
125 |
+
watchdog==3.0.0
|
126 |
+
wcwidth==0.2.6
|
127 |
+
xxhash==3.2.0
|
128 |
+
yarl==1.8.2
|
129 |
+
zipp==3.15.0
|