File size: 3,437 Bytes
71edabc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from typing import Optional
from transformers import PreTrainedModel, PretrainedConfig, DistilBertModel, BertModel
import torch
from torch import nn


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class TransformerBasedModelDistilBert(nn.Module):
    def __init__(self):
        super(TransformerBasedModelDistilBert, self).__init__()
        self.bert = DistilBertModel.from_pretrained('distilbert-base-uncased')
        self.dropout = nn.Dropout(0.55)
        self.fc = nn.Linear(768, 2)

    def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
        input_shape = input_ids.size()
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
            
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs.last_hidden_state[:, 0, :]
        pooled_output = self.dropout(pooled_output)
        logits = self.fc(pooled_output)
        return logits

class TransformerBasedModelBert(nn.Module):
    def __init__(self):
        super(TransformerBasedModelBert, self).__init__()
        self.bert = BertModel.from_pretrained('bert-base-uncased')
        self.dropout = nn.Dropout(0.55)
        self.fc = nn.Linear(768, 2)

    def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
        input_shape = input_ids.size()
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)
            
        outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
        pooled_output = outputs[1]
        pooled_output = self.dropout(pooled_output)
        logits = self.fc(pooled_output)
        return logits

class MyConfigDistil(PretrainedConfig):
    model_type = "distilbert"
    def __init__(self, final_dropout=0.55, **kwargs):
        super().__init__(**kwargs)
        self.final_dropout = final_dropout

class MyConfig(PretrainedConfig):
    model_type = "bert"
    def __init__(self, final_dropout=0.55, **kwargs):
        super().__init__(**kwargs)
        self.final_dropout = final_dropout
        
class MyHFModel_DistilBertBased(PreTrainedModel):
    config_class = MyConfigDistil
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.model = TransformerBasedModelDistilBert()
    def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
        input_shape = input_ids.size()
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)

        return self.model(input_ids=input_ids, attention_mask=attention_mask)

class MyHFModel_BertBased(PreTrainedModel):
    config_class = MyConfig
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.model = TransformerBasedModelBert()
    def forward(self, input_ids: torch.Tensor, attention_mask: Optional[torch.Tensor] = None):
        input_shape = input_ids.size()
        if attention_mask is None:
            attention_mask = torch.ones(input_shape, device=device)

        return self.model(input_ids=input_ids, attention_mask=attention_mask) 

config = MyConfigDistil(0.55)
HF_DistilBertBasedModelAppDocs = MyHFModel_DistilBertBased(config)

config_db = MyConfig(0.55)
HF_BertBasedModelAppDocs = MyHFModel_BertBased(config_db)