File size: 9,236 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

from collections import defaultdict
import os
from typing import Optional
import torch
from tqdm import tqdm
import numpy as np

from torch.utils.tensorboard import SummaryWriter
from cotracker.datasets.utils import dataclass_to_cuda_
from cotracker.utils.visualizer import Visualizer
from cotracker.models.core.model_utils import reduce_masked_mean
from cotracker.evaluation.core.eval_utils import compute_tapvid_metrics

import logging


class Evaluator:
    """
    A class defining the CoTracker evaluator.
    """

    def __init__(self, exp_dir) -> None:
        # Visualization
        self.exp_dir = exp_dir
        os.makedirs(exp_dir, exist_ok=True)
        self.visualization_filepaths = defaultdict(lambda: defaultdict(list))
        self.visualize_dir = os.path.join(exp_dir, "visualisations")

    def compute_metrics(self, metrics, sample, pred_trajectory, dataset_name):
        if isinstance(pred_trajectory, tuple):
            pred_trajectory, pred_visibility = pred_trajectory
        else:
            pred_visibility = None
        if "tapvid" in dataset_name:
            B, T, N, D = sample.trajectory.shape
            traj = sample.trajectory.clone()
            thr = 0.9

            if pred_visibility is None:
                logging.warning("visibility is NONE")
                pred_visibility = torch.zeros_like(sample.visibility)

            if not pred_visibility.dtype == torch.bool:
                pred_visibility = pred_visibility > thr

            query_points = sample.query_points.clone().cpu().numpy()

            pred_visibility = pred_visibility[:, :, :N]
            pred_trajectory = pred_trajectory[:, :, :N]

            gt_tracks = traj.permute(0, 2, 1, 3).cpu().numpy()
            gt_occluded = (
                torch.logical_not(sample.visibility.clone().permute(0, 2, 1)).cpu().numpy()
            )

            pred_occluded = (
                torch.logical_not(pred_visibility.clone().permute(0, 2, 1)).cpu().numpy()
            )
            pred_tracks = pred_trajectory.permute(0, 2, 1, 3).cpu().numpy()

            out_metrics = compute_tapvid_metrics(
                query_points,
                gt_occluded,
                gt_tracks,
                pred_occluded,
                pred_tracks,
                query_mode="strided" if "strided" in dataset_name else "first",
            )

            metrics[sample.seq_name[0]] = out_metrics
            for metric_name in out_metrics.keys():
                if "avg" not in metrics:
                    metrics["avg"] = {}
                metrics["avg"][metric_name] = np.mean(
                    [v[metric_name] for k, v in metrics.items() if k != "avg"]
                )

            logging.info(f"Metrics: {out_metrics}")
            logging.info(f"avg: {metrics['avg']}")
            print("metrics", out_metrics)
            print("avg", metrics["avg"])
        elif dataset_name == "dynamic_replica" or dataset_name == "pointodyssey":
            *_, N, _ = sample.trajectory.shape
            B, T, N = sample.visibility.shape
            H, W = sample.video.shape[-2:]
            device = sample.video.device

            out_metrics = {}

            d_vis_sum = d_occ_sum = d_sum_all = 0.0
            thrs = [1, 2, 4, 8, 16]
            sx_ = (W - 1) / 255.0
            sy_ = (H - 1) / 255.0
            sc_py = np.array([sx_, sy_]).reshape([1, 1, 2])
            sc_pt = torch.from_numpy(sc_py).float().to(device)
            __, first_visible_inds = torch.max(sample.visibility, dim=1)

            frame_ids_tensor = torch.arange(T, device=device)[None, :, None].repeat(B, 1, N)
            start_tracking_mask = frame_ids_tensor > (first_visible_inds.unsqueeze(1))

            for thr in thrs:
                d_ = (
                    torch.norm(
                        pred_trajectory[..., :2] / sc_pt - sample.trajectory[..., :2] / sc_pt,
                        dim=-1,
                    )
                    < thr
                ).float()  # B,S-1,N
                d_occ = (
                    reduce_masked_mean(d_, (1 - sample.visibility) * start_tracking_mask).item()
                    * 100.0
                )
                d_occ_sum += d_occ
                out_metrics[f"accuracy_occ_{thr}"] = d_occ

                d_vis = (
                    reduce_masked_mean(d_, sample.visibility * start_tracking_mask).item() * 100.0
                )
                d_vis_sum += d_vis
                out_metrics[f"accuracy_vis_{thr}"] = d_vis

                d_all = reduce_masked_mean(d_, start_tracking_mask).item() * 100.0
                d_sum_all += d_all
                out_metrics[f"accuracy_{thr}"] = d_all

            d_occ_avg = d_occ_sum / len(thrs)
            d_vis_avg = d_vis_sum / len(thrs)
            d_all_avg = d_sum_all / len(thrs)

            sur_thr = 50
            dists = torch.norm(
                pred_trajectory[..., :2] / sc_pt - sample.trajectory[..., :2] / sc_pt,
                dim=-1,
            )  # B,S,N
            dist_ok = 1 - (dists > sur_thr).float() * sample.visibility  # B,S,N
            survival = torch.cumprod(dist_ok, dim=1)  # B,S,N
            out_metrics["survival"] = torch.mean(survival).item() * 100.0

            out_metrics["accuracy_occ"] = d_occ_avg
            out_metrics["accuracy_vis"] = d_vis_avg
            out_metrics["accuracy"] = d_all_avg

            metrics[sample.seq_name[0]] = out_metrics
            for metric_name in out_metrics.keys():
                if "avg" not in metrics:
                    metrics["avg"] = {}
                metrics["avg"][metric_name] = float(
                    np.mean([v[metric_name] for k, v in metrics.items() if k != "avg"])
                )

            logging.info(f"Metrics: {out_metrics}")
            logging.info(f"avg: {metrics['avg']}")
            print("metrics", out_metrics)
            print("avg", metrics["avg"])

    @torch.no_grad()
    def evaluate_sequence(
        self,
        model,
        test_dataloader: torch.utils.data.DataLoader,
        dataset_name: str,
        train_mode=False,
        visualize_every: int = 1,
        writer: Optional[SummaryWriter] = None,
        step: Optional[int] = 0,
    ):
        metrics = {}

        vis = Visualizer(
            save_dir=self.exp_dir,
            fps=7,
        )

        for ind, sample in enumerate(tqdm(test_dataloader)):
            if isinstance(sample, tuple):
                sample, gotit = sample
                if not all(gotit):
                    print("batch is None")
                    continue
            if torch.cuda.is_available():
                dataclass_to_cuda_(sample)
                device = torch.device("cuda")
            else:
                device = torch.device("cpu")

            if (
                not train_mode
                and hasattr(model, "sequence_len")
                and (sample.visibility[:, : model.sequence_len].sum() == 0)
            ):
                print(f"skipping batch {ind}")
                continue

            if "tapvid" in dataset_name:
                queries = sample.query_points.clone().float()

                queries = torch.stack(
                    [
                        queries[:, :, 0],
                        queries[:, :, 2],
                        queries[:, :, 1],
                    ],
                    dim=2,
                ).to(device)
            else:
                queries = torch.cat(
                    [
                        torch.zeros_like(sample.trajectory[:, 0, :, :1]),
                        sample.trajectory[:, 0],
                    ],
                    dim=2,
                ).to(device)

            pred_tracks = model(sample.video, queries)
            if "strided" in dataset_name:
                inv_video = sample.video.flip(1).clone()
                inv_queries = queries.clone()
                inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1

                pred_trj, pred_vsb = pred_tracks
                inv_pred_trj, inv_pred_vsb = model(inv_video, inv_queries)

                inv_pred_trj = inv_pred_trj.flip(1)
                inv_pred_vsb = inv_pred_vsb.flip(1)

                mask = pred_trj == 0

                pred_trj[mask] = inv_pred_trj[mask]
                pred_vsb[mask[:, :, :, 0]] = inv_pred_vsb[mask[:, :, :, 0]]

                pred_tracks = pred_trj, pred_vsb

            if dataset_name == "badja" or dataset_name == "fastcapture":
                seq_name = sample.seq_name[0]
            else:
                seq_name = str(ind)
            if ind % visualize_every == 0:
                vis.visualize(
                    sample.video,
                    pred_tracks[0] if isinstance(pred_tracks, tuple) else pred_tracks,
                    filename=dataset_name + "_" + seq_name,
                    writer=writer,
                    step=step,
                )

            self.compute_metrics(metrics, sample, pred_tracks, dataset_name)
        return metrics