File size: 19,101 Bytes
c705408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
from typing import Any, Dict, Optional

import torch
from einops import rearrange
from models_diffusers.camera.attention import TemporalPoseCondTransformerBlock as TemporalBasicTransformerBlock
from diffusers.models.attention import BasicTransformerBlock
from torch import nn

def torch_dfs(model: torch.nn.Module):
    result = [model]
    for child in model.children():
        result += torch_dfs(child)
    return result

def _chunked_feed_forward(
    ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int, lora_scale: Optional[float] = None
):
    # "feed_forward_chunk_size" can be used to save memory
    if hidden_states.shape[chunk_dim] % chunk_size != 0:
        raise ValueError(
            f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
        )

    num_chunks = hidden_states.shape[chunk_dim] // chunk_size
    if lora_scale is None:
        ff_output = torch.cat(
            [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )
    else:
        # TOOD(Patrick): LoRA scale can be removed once PEFT refactor is complete
        ff_output = torch.cat(
            [ff(hid_slice, scale=lora_scale) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
            dim=chunk_dim,
        )

    return ff_output


class ReferenceAttentionControl:
    def __init__(
        self,
        unet,
        mode="write",
        do_classifier_free_guidance=False,
        attention_auto_machine_weight=float("inf"),
        gn_auto_machine_weight=1.0,
        style_fidelity=1.0,
        reference_attn=True,
        reference_adain=False,
        fusion_blocks="midup",
        batch_size=1,
    ) -> None:
        # 10. Modify self attention and group norm
        self.unet = unet
        assert mode in ["read", "write"]
        assert fusion_blocks in ["midup", "full"]
        self.reference_attn = reference_attn
        self.reference_adain = reference_adain
        self.fusion_blocks = fusion_blocks
        self.register_reference_hooks(
            mode,
            do_classifier_free_guidance,
            attention_auto_machine_weight,
            gn_auto_machine_weight,
            style_fidelity,
            reference_attn,
            reference_adain,
            fusion_blocks,
            batch_size=batch_size,
        )

    def register_reference_hooks(
        self,
        mode,
        do_classifier_free_guidance,
        attention_auto_machine_weight,
        gn_auto_machine_weight,
        style_fidelity,
        reference_attn,
        reference_adain,
        dtype=torch.float16,
        batch_size=1,
        num_images_per_prompt=1,
        device=torch.device("cpu"),
        fusion_blocks="midup",
    ):
        MODE = mode
        do_classifier_free_guidance = do_classifier_free_guidance
        attention_auto_machine_weight = attention_auto_machine_weight
        gn_auto_machine_weight = gn_auto_machine_weight
        style_fidelity = style_fidelity
        reference_attn = reference_attn
        reference_adain = reference_adain
        fusion_blocks = fusion_blocks
        num_images_per_prompt = num_images_per_prompt
        dtype = dtype
        if do_classifier_free_guidance:
            uc_mask = (
                torch.Tensor(
                    [1] * batch_size * num_images_per_prompt * 16
                    + [0] * batch_size * num_images_per_prompt * 16
                )
                .to(device)
                .bool()
            )
        else:
            uc_mask = (
                torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
                .to(device)
                .bool()
            )

        def hacked_basic_transformer_inner_forward(
            self,
            hidden_states: torch.FloatTensor,
            attention_mask: Optional[torch.FloatTensor] = None,
            encoder_hidden_states: Optional[torch.FloatTensor] = None,
            encoder_attention_mask: Optional[torch.FloatTensor] = None,
            timestep: Optional[torch.LongTensor] = None,
            cross_attention_kwargs: Dict[str, Any] = None,
            class_labels: Optional[torch.LongTensor] = None,
            video_length=None,
            self_attention_additional_feats=None,
            mode=None,
        ):
            batch_size = hidden_states.shape[0]

            if self.use_ada_layer_norm:
                norm_hidden_states = self.norm1(hidden_states, timestep)
            elif self.use_ada_layer_norm_zero:
                norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                    hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
                )
            elif self.use_layer_norm:
                norm_hidden_states = self.norm1(hidden_states)
            elif self.use_ada_layer_norm_single:
                shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                    self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
                ).chunk(6, dim=1)
                norm_hidden_states = self.norm1(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
                norm_hidden_states = norm_hidden_states.squeeze(1)
            else:
                raise ValueError("Incorrect norm used")

            if self.pos_embed is not None:
                norm_hidden_states = self.pos_embed(norm_hidden_states)

            # 1. Retrieve lora scale.
            lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

            # 2. Prepare GLIGEN inputs
            cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
            gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

            if self.only_cross_attention:
                attn_output = self.attn1(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states
                    if self.only_cross_attention
                    else None,
                    attention_mask=attention_mask,
                    **cross_attention_kwargs,
                )
            else:
                if MODE == "write":
                    # print("this is write")
                    self.bank.append(norm_hidden_states.clone())
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=encoder_hidden_states
                        if self.only_cross_attention
                        else None,
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )

                if MODE == "read":
                    # bank_fea = [
                    #     rearrange(
                    #         d.unsqueeze(1).repeat(1, video_length, 1, 1),
                    #         "b t l c -> (b t) l c",
                    #     )
                    #     for d in self.bank
                    # ]
                    bank_fea=[]
                    for d in self.bank:
                        if d.shape[0]==1:
                            bank_fea.append(d.repeat(norm_hidden_states.shape[0],1,1))
                        else:
                            bank_fea.append(d)

                    modify_norm_hidden_states = torch.cat(
                        [norm_hidden_states] + bank_fea, dim=1
                    )
                    attn_output = self.attn1(
                        norm_hidden_states,
                        encoder_hidden_states=modify_norm_hidden_states,
                        attention_mask=attention_mask,
                        **cross_attention_kwargs,
                    )
                    if self.use_ada_layer_norm_zero:
                        attn_output = gate_msa.unsqueeze(1) * attn_output
                    elif self.use_ada_layer_norm_single:
                        attn_output = gate_msa * attn_output

                    hidden_states = attn_output + hidden_states
                    if hidden_states.ndim == 4:
                        hidden_states = hidden_states.squeeze(1)

                    # 2.5 GLIGEN Control
                    if gligen_kwargs is not None:
                        hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

                    # 3. Cross-Attention
                    if self.attn2 is not None:
                        if self.use_ada_layer_norm:
                            norm_hidden_states = self.norm2(hidden_states, timestep)
                        elif self.use_ada_layer_norm_zero or self.use_layer_norm:
                            norm_hidden_states = self.norm2(hidden_states)
                        elif self.use_ada_layer_norm_single:
                            # For PixArt norm2 isn't applied here:
                            # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                            norm_hidden_states = hidden_states
                        else:
                            raise ValueError("Incorrect norm")

                        if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
                            norm_hidden_states = self.pos_embed(norm_hidden_states)

                        attn_output = self.attn2(
                            norm_hidden_states,
                            encoder_hidden_states=encoder_hidden_states,
                            attention_mask=encoder_attention_mask,
                            **cross_attention_kwargs,
                        )
                        hidden_states = attn_output + hidden_states

                    # 4. Feed-forward
                    if not self.use_ada_layer_norm_single:
                        norm_hidden_states = self.norm3(hidden_states)

                    if self.use_ada_layer_norm_zero:
                        norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

                    if self.use_ada_layer_norm_single:
                        norm_hidden_states = self.norm2(hidden_states)
                        norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

                    if self._chunk_size is not None:
                        # "feed_forward_chunk_size" can be used to save memory
                        ff_output = _chunked_feed_forward(
                            self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
                        )
                    else:
                        ff_output = self.ff(norm_hidden_states, scale=lora_scale)

                    if self.use_ada_layer_norm_zero:
                        ff_output = gate_mlp.unsqueeze(1) * ff_output
                    elif self.use_ada_layer_norm_single:
                        ff_output = gate_mlp * ff_output

                    hidden_states = ff_output + hidden_states
                    if hidden_states.ndim == 4:
                        hidden_states = hidden_states.squeeze(1)

                    return hidden_states

            if self.use_ada_layer_norm_zero:
                attn_output = gate_msa.unsqueeze(1) * attn_output
    
            elif self.use_ada_layer_norm_single:
                attn_output = gate_msa * attn_output

            hidden_states = attn_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

            # 2.5 GLIGEN Control
            if gligen_kwargs is not None:
                hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

            # 3. Cross-Attention
            if self.attn2 is not None:
                if self.use_ada_layer_norm:
                    norm_hidden_states = self.norm2(hidden_states, timestep)
                elif self.use_ada_layer_norm_zero or self.use_layer_norm:
                    norm_hidden_states = self.norm2(hidden_states)
                elif self.use_ada_layer_norm_single:
                    # For PixArt norm2 isn't applied here:
                    # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                    norm_hidden_states = hidden_states
                else:
                    raise ValueError("Incorrect norm")

                if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
                    norm_hidden_states = self.pos_embed(norm_hidden_states)

                attn_output = self.attn2(
                    norm_hidden_states,
                    encoder_hidden_states=encoder_hidden_states,
                    attention_mask=encoder_attention_mask,
                    **cross_attention_kwargs,
                )
                hidden_states = attn_output + hidden_states

            # 4. Feed-forward
            if not self.use_ada_layer_norm_single:
                norm_hidden_states = self.norm3(hidden_states)

            if self.use_ada_layer_norm_zero:
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

            if self.use_ada_layer_norm_single:
                norm_hidden_states = self.norm2(hidden_states)
                norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

            if self._chunk_size is not None:
                # "feed_forward_chunk_size" can be used to save memory
                ff_output = _chunked_feed_forward(
                    self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
                )
            else:
                ff_output = self.ff(norm_hidden_states, scale=lora_scale)

            if self.use_ada_layer_norm_zero:
                ff_output = gate_mlp.unsqueeze(1) * ff_output
            elif self.use_ada_layer_norm_single:
                ff_output = gate_mlp * ff_output

            hidden_states = ff_output + hidden_states
            if hidden_states.ndim == 4:
                hidden_states = hidden_states.squeeze(1)

            return hidden_states

        if self.reference_attn:
            if self.fusion_blocks == "midup":
                attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, BasicTransformerBlock)
                    # or isinstance(module, TemporalBasicTransformerBlock) 
                ]
            elif self.fusion_blocks == "full":
                attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, BasicTransformerBlock)
                    # or isinstance(module, TemporalBasicTransformerBlock)
                ]
            attn_modules = sorted(
                attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )

            for i, module in enumerate(attn_modules):
                module._original_inner_forward = module.forward
                if isinstance(module, BasicTransformerBlock):
                    module.forward = hacked_basic_transformer_inner_forward.__get__(
                        module, BasicTransformerBlock
                    )
                # if isinstance(module, TemporalBasicTransformerBlock):             
                #     module.forward = hacked_basic_transformer_inner_forward.__get__(
                #         module, TemporalBasicTransformerBlock
                #     )

                module.bank = []
                module.attn_weight = float(i) / float(len(attn_modules))

    def update(self, writer, dtype=torch.float16):
        if self.reference_attn:


            if self.fusion_blocks == "midup":
                reader_attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, BasicTransformerBlock)
                ]
                writer_attn_modules = [
                    module
                    for module in (
                        torch_dfs(writer.unet.mid_block)
                        + torch_dfs(writer.unet.up_blocks)
                    )
                    if isinstance(module, BasicTransformerBlock)
                ]
            elif self.fusion_blocks == "full":
                # reader_attn_modules = [
                #     module
                #     for module in torch_dfs(self.unet)
                #     if isinstance(module, TemporalBasicTransformerBlock)
                # ]
                reader_attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, BasicTransformerBlock)
                ]                
                writer_attn_modules = [
                    module
                    for module in torch_dfs(writer.unet)
                    if isinstance(module, BasicTransformerBlock)
                ]
            reader_attn_modules = sorted(
                reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            writer_attn_modules = sorted(
                writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            for r, w in zip(reader_attn_modules, writer_attn_modules):
                r.bank = [v.clone().to(dtype) for v in w.bank]
                # w.bank.clear()

    def clear(self):
        if self.reference_attn:
            if self.fusion_blocks == "midup":
                reader_attn_modules = [
                    module
                    for module in (
                        torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
                    )
                    if isinstance(module, BasicTransformerBlock)
                    # or isinstance(module, TemporalBasicTransformerBlock)
                ]
            elif self.fusion_blocks == "full":
                reader_attn_modules = [
                    module
                    for module in torch_dfs(self.unet)
                    if isinstance(module, BasicTransformerBlock)
                    # or isinstance(module, TemporalBasicTransformerBlock)
                ]
            reader_attn_modules = sorted(
                reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
            )
            for r in reader_attn_modules:
                r.bank.clear()