|
from dataclasses import dataclass |
|
from typing import Callable, Optional |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from diffusers.utils import BaseOutput |
|
from diffusers.models.attention_processor import Attention |
|
from diffusers.models.attention import FeedForward |
|
|
|
from typing import Dict, Any |
|
|
|
from models_diffusers.camera.attention_processor import PoseAdaptorAttnProcessor |
|
|
|
from einops import rearrange |
|
import math |
|
|
|
|
|
class InflatedGroupNorm(nn.GroupNorm): |
|
def forward(self, x): |
|
|
|
|
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
def zero_module(module): |
|
|
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
@dataclass |
|
class TemporalTransformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
def get_motion_module( |
|
in_channels, |
|
motion_module_type: str, |
|
motion_module_kwargs: dict |
|
): |
|
if motion_module_type == "Vanilla": |
|
return VanillaTemporalModule(in_channels=in_channels, **motion_module_kwargs) |
|
else: |
|
raise ValueError |
|
|
|
|
|
class VanillaTemporalModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads=8, |
|
num_transformer_block=2, |
|
attention_block_types=("Temporal_Self",), |
|
temporal_position_encoding=True, |
|
temporal_position_encoding_max_len=32, |
|
temporal_attention_dim_div=1, |
|
cross_attention_dim=320, |
|
zero_initialize=True, |
|
encoder_hidden_states_query=(False, False), |
|
attention_activation_scale=1.0, |
|
attention_processor_kwargs: Dict = {}, |
|
causal_temporal_attention=False, |
|
causal_temporal_attention_mask_type="", |
|
rescale_output_factor=1.0 |
|
): |
|
super().__init__() |
|
|
|
self.temporal_transformer = TemporalTransformer3DModel( |
|
in_channels=in_channels, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=in_channels // num_attention_heads // temporal_attention_dim_div, |
|
num_layers=num_transformer_block, |
|
attention_block_types=attention_block_types, |
|
cross_attention_dim=cross_attention_dim, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
encoder_hidden_states_query=encoder_hidden_states_query, |
|
attention_activation_scale=attention_activation_scale, |
|
attention_processor_kwargs=attention_processor_kwargs, |
|
causal_temporal_attention=causal_temporal_attention, |
|
causal_temporal_attention_mask_type=causal_temporal_attention_mask_type, |
|
rescale_output_factor=rescale_output_factor |
|
) |
|
|
|
if zero_initialize: |
|
self.temporal_transformer.proj_out = zero_module(self.temporal_transformer.proj_out) |
|
|
|
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None, |
|
cross_attention_kwargs: Dict[str, Any] = {}): |
|
hidden_states = self.temporal_transformer(hidden_states, encoder_hidden_states, attention_mask, cross_attention_kwargs=cross_attention_kwargs) |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class TemporalTransformer3DModel(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels, |
|
num_attention_heads, |
|
attention_head_dim, |
|
num_layers, |
|
attention_block_types=("Temporal_Self", "Temporal_Self",), |
|
dropout=0.0, |
|
norm_num_groups=32, |
|
cross_attention_dim=320, |
|
activation_fn="geglu", |
|
attention_bias=False, |
|
upcast_attention=False, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=32, |
|
encoder_hidden_states_query=(False, False), |
|
attention_activation_scale=1.0, |
|
attention_processor_kwargs: Dict = {}, |
|
|
|
causal_temporal_attention=None, |
|
causal_temporal_attention_mask_type="", |
|
rescale_output_factor=1.0 |
|
): |
|
super().__init__() |
|
assert causal_temporal_attention is not None |
|
self.causal_temporal_attention = causal_temporal_attention |
|
|
|
assert (not causal_temporal_attention) or (causal_temporal_attention_mask_type != "") |
|
self.causal_temporal_attention_mask_type = causal_temporal_attention_mask_type |
|
self.causal_temporal_attention_mask = None |
|
|
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
self.norm = InflatedGroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
dim=inner_dim, |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
attention_block_types=attention_block_types, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
attention_bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
encoder_hidden_states_query=encoder_hidden_states_query, |
|
attention_activation_scale=attention_activation_scale, |
|
attention_processor_kwargs=attention_processor_kwargs, |
|
rescale_output_factor=rescale_output_factor, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
|
|
def get_causal_temporal_attention_mask(self, hidden_states): |
|
batch_size, sequence_length, dim = hidden_states.shape |
|
|
|
if self.causal_temporal_attention_mask is None or self.causal_temporal_attention_mask.shape != ( |
|
batch_size, sequence_length, sequence_length): |
|
if self.causal_temporal_attention_mask_type == "causal": |
|
|
|
mask = torch.tril(torch.ones(sequence_length, sequence_length)) |
|
|
|
elif self.causal_temporal_attention_mask_type == "2-seq": |
|
|
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:sequence_length // 2, :sequence_length // 2] = 1 |
|
mask[-sequence_length // 2:, -sequence_length // 2:] = 1 |
|
|
|
elif self.causal_temporal_attention_mask_type == "0-prev": |
|
|
|
indices = torch.arange(sequence_length) |
|
indices_prev = indices - 1 |
|
indices_prev[0] = 0 |
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:, 0] = 1. |
|
mask[indices, indices_prev] = 1. |
|
|
|
elif self.causal_temporal_attention_mask_type == "0": |
|
|
|
mask = torch.zeros(sequence_length, sequence_length) |
|
mask[:, 0] = 1 |
|
|
|
elif self.causal_temporal_attention_mask_type == "wo-self": |
|
indices = torch.arange(sequence_length) |
|
mask = torch.ones(sequence_length, sequence_length) |
|
mask[indices, indices] = 0 |
|
|
|
elif self.causal_temporal_attention_mask_type == "circle": |
|
indices = torch.arange(sequence_length) |
|
indices_prev = indices - 1 |
|
indices_prev[0] = 0 |
|
|
|
mask = torch.eye(sequence_length) |
|
mask[indices, indices_prev] = 1 |
|
mask[0, -1] = 1 |
|
|
|
else: |
|
raise ValueError |
|
|
|
|
|
mask = mask.masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0)) |
|
mask = mask.unsqueeze(0) |
|
mask = mask.repeat(batch_size, 1, 1) |
|
|
|
self.causal_temporal_attention_mask = mask.to(hidden_states.device) |
|
|
|
return self.causal_temporal_attention_mask |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, |
|
cross_attention_kwargs: Dict[str, Any] = {},): |
|
residual = hidden_states |
|
|
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
height, width = hidden_states.shape[-2:] |
|
|
|
hidden_states = self.norm(hidden_states) |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b h w) f c") |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
attention_mask = self.get_causal_temporal_attention_mask( |
|
hidden_states) if self.causal_temporal_attention else attention_mask |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, cross_attention_kwargs=cross_attention_kwargs) |
|
hidden_states = self.proj_out(hidden_states) |
|
|
|
hidden_states = rearrange(hidden_states, "(b h w) f c -> b c f h w", h=height, w=width) |
|
|
|
output = hidden_states + residual |
|
|
|
return output |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
attention_block_types=("Temporal_Self", "Temporal_Self",), |
|
dropout=0.0, |
|
norm_num_groups=32, |
|
cross_attention_dim=768, |
|
activation_fn="geglu", |
|
attention_bias=False, |
|
upcast_attention=False, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=32, |
|
encoder_hidden_states_query=(False, False), |
|
attention_activation_scale=1.0, |
|
attention_processor_kwargs: Dict = {}, |
|
rescale_output_factor=1.0 |
|
): |
|
super().__init__() |
|
|
|
attention_blocks = [] |
|
norms = [] |
|
self.attention_block_types = attention_block_types |
|
|
|
for block_idx, block_name in enumerate(attention_block_types): |
|
attention_blocks.append( |
|
TemporalSelfAttention( |
|
attention_mode=block_name, |
|
cross_attention_dim=cross_attention_dim if block_name in ['Temporal_Cross', 'Temporal_Pose_Adaptor'] else None, |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
temporal_position_encoding=temporal_position_encoding, |
|
temporal_position_encoding_max_len=temporal_position_encoding_max_len, |
|
rescale_output_factor=rescale_output_factor, |
|
) |
|
) |
|
norms.append(nn.LayerNorm(dim)) |
|
|
|
self.attention_blocks = nn.ModuleList(attention_blocks) |
|
self.norms = nn.ModuleList(norms) |
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.ff_norm = nn.LayerNorm(dim) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, cross_attention_kwargs: Dict[str, Any] = {}): |
|
for attention_block, norm, attention_block_type in zip(self.attention_blocks, self.norms, self.attention_block_types): |
|
norm_hidden_states = norm(hidden_states) |
|
hidden_states = attention_block( |
|
norm_hidden_states, |
|
encoder_hidden_states=norm_hidden_states if attention_block_type == 'Temporal_Self' else encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs |
|
) + hidden_states |
|
|
|
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states |
|
|
|
output = hidden_states |
|
return output |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__( |
|
self, |
|
d_model, |
|
dropout=0., |
|
max_len=32, |
|
): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(1, max_len, d_model) |
|
pe[0, :, 0::2] = torch.sin(position * div_term) |
|
pe[0, :, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer('pe', pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:, :x.size(1)] |
|
return self.dropout(x) |
|
|
|
|
|
class TemporalSelfAttention(Attention): |
|
def __init__( |
|
self, |
|
attention_mode=None, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=32, |
|
rescale_output_factor=1.0, |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
assert attention_mode == "Temporal_Self" |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
max_len=temporal_position_encoding_max_len |
|
) if temporal_position_encoding else None |
|
self.rescale_output_factor = rescale_output_factor |
|
|
|
def set_use_memory_efficient_attention_xformers( |
|
self, use_memory_efficient_attention_xformers: bool, attention_op: Optional[Callable] = None |
|
): |
|
|
|
|
|
pass |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, **cross_attention_kwargs): |
|
|
|
|
|
|
|
|
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
if "pose_feature" in cross_attention_kwargs: |
|
pose_feature = cross_attention_kwargs["pose_feature"] |
|
if pose_feature.ndim == 5: |
|
pose_feature = rearrange(pose_feature, "b c f h w -> (b h w) f c") |
|
else: |
|
assert pose_feature.ndim == 3 |
|
cross_attention_kwargs["pose_feature"] = pose_feature |
|
|
|
if isinstance(self.processor, PoseAdaptorAttnProcessor): |
|
return self.processor( |
|
self, |
|
hidden_states, |
|
cross_attention_kwargs.pop('pose_feature'), |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
elif hasattr(self.processor, "__call__"): |
|
return self.processor.__call__( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
else: |
|
return self.processor( |
|
self, |
|
hidden_states, |
|
encoder_hidden_states=None, |
|
attention_mask=attention_mask, |
|
**cross_attention_kwargs, |
|
) |
|
|
|
|