|
import sys |
|
|
|
from pyparsing import col |
|
sys.path.insert(0,".") |
|
|
|
import argparse |
|
from packaging import version |
|
import glob |
|
import os |
|
from LightGlue.lightglue import LightGlue, SuperPoint, DISK, SIFT, ALIKED, DoGHardNet |
|
from LightGlue.lightglue.utils import load_image, rbd |
|
from cotracker.predictor import CoTrackerPredictor, sample_trajectories, generate_gassian_heatmap, sample_trajectories_with_ref |
|
import torch |
|
from diffusers.utils.import_utils import is_xformers_available |
|
|
|
from models_diffusers.unet_spatio_temporal_condition import UNetSpatioTemporalConditionModel |
|
from pipelines.AniDoc import AniDocPipeline |
|
from models_diffusers.controlnet_svd import ControlNetSVDModel |
|
from diffusers.utils import load_image, export_to_video, export_to_gif |
|
import time |
|
from lineart_extractor.annotator.lineart import LineartDetector |
|
import numpy as np |
|
from PIL import Image |
|
from utils import load_images_from_folder,export_gif_with_ref,export_gif_side_by_side,extract_frames_from_video,safe_round,select_multiple_points,generate_point_map,generate_point_map_frames,export_gif_side_by_side_complete,export_gif_side_by_side_complete_ablation |
|
import random |
|
import torchvision.transforms as T |
|
from LightGlue.lightglue import viz2d |
|
import matplotlib.pyplot as plt |
|
from cotracker.utils.visualizer import Visualizer, read_video_from_path |
|
from torchvision.transforms import PILToTensor |
|
|
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--pretrained_model_name_or_path", type=str, default="pretrained_weights/stable-video-diffusion-img2vid-xt", help="Path to the input image.") |
|
|
|
parser.add_argument( |
|
"--pretrained_unet", type=str, help="Path to the input image.", |
|
|
|
default="pretrained_weights/anidoc" |
|
|
|
) |
|
parser.add_argument( |
|
"--controlnet_model_name_or_path", type=str, help="Path to the input image.", |
|
default="pretrained_weights/anidoc/controlnet" |
|
) |
|
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output video.") |
|
parser.add_argument("--seed", type=int, default=42, help="random seed.") |
|
|
|
parser.add_argument("--noise_aug", type=float, default=0.02) |
|
|
|
parser.add_argument("--num_frames", type=int, default=14) |
|
parser.add_argument("--width", type=int, default=512) |
|
parser.add_argument("--height", type=int, default=320) |
|
parser.add_argument("--all_sketch",action="store_true",help="all_sketch") |
|
parser.add_argument("--not_quant_sketch",action="store_true",help="not_quant_sketch") |
|
parser.add_argument("--repeat_sketch",action="store_true",help="not_quant_sketch") |
|
parser.add_argument("--matching",action="store_true",help="add keypoint matching") |
|
parser.add_argument("--tracking",action="store_true",help="tracking keypoint") |
|
parser.add_argument("--repeat_matching",action="store_true",help="not tracking, but just simply repeat") |
|
parser.add_argument("--tracker_point_init", type=str, default='gaussion', choices=['dift', 'gaussion', 'both'], help="Regular grid size") |
|
parser.add_argument( |
|
"--tracker_shift_grid", |
|
type=int, default=0, choices=[0, 1], |
|
help="shift the grid for the tracker") |
|
parser.add_argument("--tracker_grid_size", type=int, default=8, help="Regular grid size") |
|
parser.add_argument( |
|
"--tracker_grid_query_frame", |
|
type=int, |
|
default=0, |
|
help="Compute dense and grid tracks starting from this frame", |
|
) |
|
parser.add_argument( |
|
"--tracker_backward_tracking", |
|
action="store_true", |
|
help="Compute tracks in both directions, not only forward", |
|
) |
|
parser.add_argument("--control_image", type=str, default=None, help="Path to the output video.") |
|
parser.add_argument("--ref_image", type=str, default=None, help="Path to the output video.") |
|
parser.add_argument("--max_points", type=int, default=10) |
|
|
|
args = parser.parse_args() |
|
|
|
return args |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
args = get_args() |
|
dtype = torch.float16 |
|
|
|
|
|
unet = UNetSpatioTemporalConditionModel.from_pretrained( |
|
|
|
args.pretrained_unet, |
|
subfolder="unet", |
|
torch_dtype=torch.float16, |
|
low_cpu_mem_usage=True, |
|
custom_resume=True, |
|
) |
|
|
|
unet.to("cuda",dtype) |
|
|
|
if args.controlnet_model_name_or_path: |
|
|
|
controlnet = ControlNetSVDModel.from_pretrained( |
|
args.controlnet_model_name_or_path, |
|
) |
|
else: |
|
|
|
controlnet = ControlNetSVDModel.from_unet( |
|
unet, |
|
conditioning_channels=8 |
|
) |
|
controlnet.to("cuda",dtype) |
|
if is_xformers_available(): |
|
import xformers |
|
xformers_version = version.parse(xformers.__version__) |
|
unet.enable_xformers_memory_efficient_attention() |
|
else: |
|
raise ValueError( |
|
"xformers is not available. Make sure it is installed correctly") |
|
|
|
pipe = AniDocPipeline.from_pretrained( |
|
|
|
args.pretrained_model_name_or_path, |
|
unet=unet, |
|
controlnet=controlnet, |
|
low_cpu_mem_usage=False, |
|
torch_dtype=torch.float16, variant="fp16" |
|
) |
|
pipe.to("cuda") |
|
device = "cuda" |
|
detector = LineartDetector(device) |
|
extractor = SuperPoint(max_num_keypoints=2000).eval().to(device) |
|
matcher = LightGlue(features='superpoint').eval().to(device) |
|
|
|
tracker = CoTrackerPredictor( |
|
checkpoint="pretrained_weights/cotracker2.pth", |
|
shift_grid=args.tracker_shift_grid, |
|
) |
|
tracker.requires_grad_(False) |
|
tracker.to(device, dtype=torch.float32) |
|
|
|
|
|
width, height = args.width, args.height |
|
|
|
|
|
if args.output_dir is None: |
|
args.output_dir = "results" |
|
os.makedirs(args.output_dir, exist_ok=True) |
|
|
|
image_folder_list=[ |
|
'data_test/sample1.mp4', |
|
] |
|
|
|
ref_image_list=[ |
|
"data_test/sample1.png", |
|
] |
|
if args.ref_image is not None and args.control_image is not None: |
|
ref_image_list=[args.ref_image] |
|
image_folder_list=[args.control_image] |
|
|
|
|
|
|
|
for val_id ,each_sample in enumerate(image_folder_list): |
|
if os.path.isdir(each_sample): |
|
|
|
control_images=load_images_from_folder(each_sample) |
|
elif each_sample.endswith(".mp4"): |
|
control_images = extract_frames_from_video(each_sample) |
|
ref_image=load_image(ref_image_list[val_id]).resize((width, height)) |
|
|
|
|
|
|
|
for j, each in enumerate(control_images): |
|
control_images[j]=control_images[j].resize((width, height)) |
|
|
|
|
|
if args.all_sketch: |
|
controlnet_image=[] |
|
for k in range(len(control_images)): |
|
sketch=control_images[k] |
|
sketch = np.array(sketch) |
|
sketch=detector(sketch,coarse=False) |
|
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) |
|
if args.not_quant_sketch: |
|
pass |
|
else: |
|
sketch= (sketch > 200).astype(np.uint8)*255 |
|
sketch = Image.fromarray(sketch).resize((width, height)) |
|
|
|
controlnet_image.append(sketch) |
|
|
|
controlnet_sketch_condition = [T.ToTensor()(img).unsqueeze(0) for img in controlnet_image] |
|
controlnet_sketch_condition = torch.cat(controlnet_sketch_condition, dim=0).unsqueeze(0).to(device, dtype=torch.float16) |
|
controlnet_sketch_condition = (controlnet_sketch_condition - 0.5) / 0.5 |
|
|
|
with torch.no_grad(): |
|
ref_img_value = T.ToTensor()(ref_image).to(device, dtype=torch.float16) |
|
|
|
ref_img_value = ref_img_value.to(torch.float32) |
|
current_img= T.ToTensor()(controlnet_image[0]).to(device, dtype=torch.float16) |
|
current_img = current_img.to(torch.float32) |
|
feats0 = extractor.extract(ref_img_value) |
|
feats1 = extractor.extract(current_img) |
|
matches01 = matcher({'image0': feats0, 'image1': feats1}) |
|
feats0, feats1, matches01 = [rbd(x) for x in [feats0, feats1, matches01]] |
|
matches = matches01['matches'] |
|
points0 = feats0['keypoints'][matches[..., 0]] |
|
points1 = feats1['keypoints'][matches[..., 1]] |
|
points0 = points0.cpu().numpy() |
|
|
|
points1 = points1.cpu().numpy() |
|
|
|
points0 = safe_round(points0, current_img.shape) |
|
points1 = safe_round(points1, current_img.shape) |
|
|
|
num_points = min(50, points0.shape[0]) |
|
points0,points1 = select_multiple_points(points0, points1, num_points) |
|
mask1, mask2 = generate_point_map(size=current_img.shape, coords0=points0, coords1=points1) |
|
|
|
point_map1=torch.from_numpy(mask1) |
|
point_map2=torch.from_numpy(mask2) |
|
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16) |
|
point_map2 = point_map2.unsqueeze(0).unsqueeze(0).unsqueeze(0).to(device, dtype=torch.float16) |
|
point_map=torch.cat([point_map1,point_map2],dim=2) |
|
conditional_pixel_values=ref_img_value.unsqueeze(0).unsqueeze(0) |
|
conditional_pixel_values = (conditional_pixel_values - 0.5) / 0.5 |
|
|
|
point_map_with_ref= torch.cat([point_map,conditional_pixel_values],dim=2) |
|
original_shape = list(point_map_with_ref.shape) |
|
new_shape = original_shape.copy() |
|
new_shape[1] = args.num_frames-1 |
|
|
|
if args.repeat_matching: |
|
matching_controlnet_image=point_map_with_ref.repeat(1,args.num_frames,1,1,1) |
|
controlnet_condition=torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2) |
|
elif args.tracking: |
|
with torch.no_grad(): |
|
video_for_tracker = (controlnet_sketch_condition * 0.5 + 0.5) * 255. |
|
queries = np.insert(points1,0,0,axis=1) |
|
queries =torch.from_numpy(queries).to(device,torch.float).unsqueeze(0) |
|
|
|
if queries.shape[1]==0: |
|
pred_tracks_sampled=None |
|
points0_sampled = None |
|
else: |
|
pred_tracks, pred_visibility = tracker( |
|
video_for_tracker.to(dtype=torch.float32), |
|
queries=queries, |
|
grid_size=args.tracker_grid_size, |
|
grid_query_frame=args.tracker_grid_query_frame, |
|
backward_tracking=args.tracker_backward_tracking, |
|
|
|
) |
|
pred_tracks_sampled, pred_visibility_sampled,points0_sampled = sample_trajectories_with_ref( |
|
pred_tracks.cpu(), pred_visibility.cpu(), torch.from_numpy(points0).unsqueeze(0).cpu(), |
|
max_points=args.max_points, |
|
motion_threshold=1, |
|
vis_threshold=3, |
|
) |
|
if pred_tracks_sampled is None: |
|
mask1 = np.zeros((args.height, args.width), dtype=np.uint8) |
|
mask2 = np.zeros((args.num_frames,args.height, args.width), dtype=np.uint8) |
|
else: |
|
pred_tracks_sampled = pred_tracks_sampled.squeeze(0).cpu().numpy() |
|
pred_visibility_sampled =pred_visibility_sampled.squeeze(0).cpu().numpy() |
|
points0_sampled =points0_sampled.squeeze(0).cpu().numpy() |
|
for frame_id in range(args.num_frames): |
|
pred_tracks_sampled[frame_id] = safe_round(pred_tracks_sampled[frame_id],current_img.shape) |
|
points0_sampled = safe_round(points0_sampled,current_img.shape) |
|
|
|
mask1, mask2 = generate_point_map_frames(size=current_img.shape, coords0=points0_sampled,coords1=pred_tracks_sampled,visibility=pred_visibility_sampled) |
|
|
|
point_map1=torch.from_numpy(mask1) |
|
point_map2=torch.from_numpy(mask2) |
|
point_map1 = point_map1.unsqueeze(0).unsqueeze(0).repeat(1,args.num_frames,1,1,1).to(device, dtype=torch.float16) |
|
point_map2 = point_map2.unsqueeze(0).unsqueeze(2).to(device, dtype=torch.float16) |
|
point_map=torch.cat([point_map1,point_map2],dim=2) |
|
|
|
conditional_pixel_values_repeat=conditional_pixel_values.repeat(1,14,1,1,1) |
|
|
|
point_map_with_ref= torch.cat([point_map,conditional_pixel_values_repeat],dim=2) |
|
controlnet_condition= torch.cat([controlnet_sketch_condition, point_map_with_ref], dim=2) |
|
else: |
|
zero_tensor = torch.zeros(new_shape).to(device, dtype=torch.float16) |
|
matching_controlnet_image=torch.cat((point_map_with_ref,zero_tensor),dim=1) |
|
controlnet_condition = torch.cat([controlnet_sketch_condition, matching_controlnet_image], dim=2) |
|
|
|
|
|
ref_base_name=os.path.splitext(os.path.basename(ref_image_list[val_id]))[0] |
|
sketch_base_name=os.path.splitext(os.path.basename(each_sample))[0] |
|
supp_dir=os.path.join(args.output_dir,ref_base_name+"_"+sketch_base_name) |
|
os.makedirs(supp_dir, exist_ok=True) |
|
|
|
elif args.repeat_sketch: |
|
controlnet_image=[] |
|
for i_2 in range(int(len(control_images)/2)): |
|
sketch=control_images[0] |
|
sketch = np.array(sketch) |
|
sketch=detector(sketch,coarse=False) |
|
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) |
|
|
|
if args.not_quant_sketch: |
|
pass |
|
else: |
|
sketch= (sketch > 200).astype(np.uint8)*255 |
|
sketch = Image.fromarray(sketch) |
|
controlnet_image.append(sketch) |
|
for i_3 in range(int(len(control_images)/2)): |
|
sketch=control_images[-1] |
|
|
|
|
|
|
|
sketch = np.array(sketch) |
|
sketch=detector(sketch,coarse=False) |
|
sketch=np.repeat(sketch[:, :, np.newaxis], 3, axis=2) |
|
|
|
if args.not_quant_sketch: |
|
pass |
|
else: |
|
sketch= (sketch > 200).astype(np.uint8)*255 |
|
sketch = Image.fromarray(sketch) |
|
|
|
controlnet_image.append(sketch) |
|
|
|
|
|
|
|
generator = torch.manual_seed(args.seed) |
|
|
|
|
|
with torch.inference_mode(): |
|
video_frames = pipe( |
|
ref_image, |
|
controlnet_condition, |
|
height=args.height, |
|
width=args.width, |
|
num_frames=14, |
|
decode_chunk_size=8, |
|
motion_bucket_id=127, |
|
fps=7, |
|
noise_aug_strength=0.02, |
|
generator=generator, |
|
).frames[0] |
|
|
|
|
|
|
|
|
|
out_file = supp_dir+'.mp4' |
|
|
|
|
|
if args.all_sketch: |
|
|
|
|
|
export_gif_side_by_side_complete_ablation(ref_image,controlnet_image,video_frames,out_file.replace('.mp4','.gif'),supp_dir,6) |
|
|
|
elif args.repeat_sketch: |
|
export_gif_with_ref(control_images[0],video_frames,controlnet_image[-1],controlnet_image[0],out_file.replace('.mp4','.gif'),6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|