Spaces:
Sleeping
Sleeping
import argparse | |
import math | |
import os | |
import cv2 | |
import subprocess | |
from datetime import timedelta | |
from urllib.parse import urlparse | |
import re | |
import numpy as np | |
import PIL | |
from PIL import Image, ImageDraw | |
import datetime | |
import torch | |
import torchvision | |
import torch.distributed as dist | |
from torch.utils.data.distributed import DistributedSampler | |
from torch.nn.parallel import DistributedDataParallel as DDP | |
import torchvision.transforms as transforms | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from einops import rearrange | |
import random | |
from skimage.metrics import structural_similarity as compare_ssim | |
from diffusers.utils import load_image | |
def export_to_video(video_frames, output_video_path, fps): | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
h, w, _ = video_frames[0].shape | |
video_writer = cv2.VideoWriter( | |
output_video_path, fourcc, fps=fps, frameSize=(w, h)) | |
for i in range(len(video_frames)): | |
img = cv2.cvtColor(video_frames[i], cv2.COLOR_RGB2BGR) | |
video_writer.write(img) | |
def export_to_gif(frames, output_gif_path, fps): | |
""" | |
Export a list of frames to a GIF. | |
Args: | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- output_gif_path (str): Path to save the output GIF. | |
- duration_ms (int): Duration of each frame in milliseconds. | |
""" | |
# Convert numpy arrays to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance( | |
frame, np.ndarray) else frame for frame in frames] | |
pil_frames[0].save(output_gif_path.replace('.mp4', '.gif'), | |
format='GIF', | |
append_images=pil_frames[1:], | |
save_all=True, | |
duration=100, | |
loop=0) | |
from PIL import Image | |
import numpy as np | |
def export_gif_with_ref(start_image, frames, end_image, reference_image, output_gif_path, fps): | |
""" | |
Export a list of frames into a GIF with columns and an additional version with only frames. | |
Args: | |
- start_image (PIL.Image): The starting image. | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- end_image (PIL.Image): The ending image. | |
- reference_image (PIL.Image): The reference image. | |
- output_gif_path (str): Path to save the output GIF. | |
- fps (int): Frames per second for the GIF. | |
""" | |
# Convert numpy frames to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames] | |
# Get dimensions of images | |
width, height = start_image.size | |
# Resize the reference image and frames to match the height of start and end images if needed | |
reference_image = reference_image.resize((reference_image.width, height)) | |
resized_frames = [frame.resize((frame.width, height)) for frame in pil_frames] | |
# Create a new image for each frame with the three columns | |
column_frames = [] | |
for frame in resized_frames: | |
# Create an empty image with the total width for all three columns | |
new_width = start_image.width + reference_image.width + end_image.width+frame.width | |
combined_frame = Image.new('RGB', (new_width, height)) | |
# Paste the start image, reference image, and frame into the new image | |
combined_frame.paste(start_image, (0, 0)) | |
combined_frame.paste(reference_image, (start_image.width, 0)) | |
combined_frame.paste(end_image, (start_image.width + reference_image.width, 0)) | |
combined_frame.paste(frame, (start_image.width + reference_image.width+end_image.width, 0)) | |
column_frames.append(combined_frame) | |
# Calculate frame duration in milliseconds based on fps | |
frame_duration = 150 | |
# Save the GIF with columns | |
column_frames[0].save(output_gif_path, | |
format='GIF', | |
append_images=column_frames[1:], | |
save_all=True, | |
duration=frame_duration, | |
loop=0) | |
def tensor_to_vae_latent(t, vae): | |
video_length = t.shape[1] | |
t = rearrange(t, "b f c h w -> (b f) c h w") | |
latents = vae.encode(t).latent_dist.sample() | |
latents = rearrange(latents, "(b f) c h w -> b f c h w", f=video_length) | |
latents = latents * vae.config.scaling_factor | |
return latents | |
def download_image(url): | |
original_image = ( | |
lambda image_url_or_path: load_image(image_url_or_path) | |
if urlparse(image_url_or_path).scheme | |
else PIL.Image.open(image_url_or_path).convert("RGB") | |
)(url) | |
return original_image | |
def map_ssim_distance(dis): | |
if dis > 0.95: | |
return 1 | |
elif dis > 0.9: | |
return 2 | |
elif dis > 0.85: | |
return 3 | |
elif dis > 0.80: | |
return 4 | |
elif dis > 0.75: | |
return 5 | |
elif dis > 0.70: | |
return 6 | |
elif dis > 0.65: | |
return 7 | |
elif dis > 0.60: | |
return 8 | |
elif dis > 0.55: | |
return 9 | |
else: | |
return 10 | |
def calculate_ssim(frame1, frame2): | |
# convert the frames to grayscale images since the compare_ssim function accepts grayscale images | |
gray_frame1 = cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY) | |
gray_frame2 = cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY) | |
# compute SSIM | |
ssim = compare_ssim(gray_frame1, gray_frame2) | |
return ssim | |
def mse(image1, image2): | |
err = np.sum((image1.astype("float") - image2.astype("float")) ** 2) | |
err /= float(image1.shape[0] * image1.shape[1]) | |
return err | |
def calculate_video_motion_distance(frames_data): | |
# obtain the number of frames in the video | |
frame_count, _, _, _ = frames_data.shape | |
# init | |
similarities = [] | |
# calculate the similarity between each two frames | |
for frame_index in range(1, frame_count): | |
prev_frame = frames_data[frame_index - 1, :, :, :] | |
current_frame = frames_data[frame_index, :, :, :] | |
# calculate the similarity, you can choose to use SSIM or MSE, etc. | |
similarity = calculate_ssim(prev_frame, current_frame) | |
similarities.append(similarity) | |
# calculate the mean similarity as the motion distance of the video | |
motion_distance = np.mean(similarities) | |
return similarities, motion_distance | |
def load_images_from_folder_to_pil(folder, target_size=(512, 512)): | |
images = [] | |
valid_extensions = {".jpg", ".jpeg", ".png", ".bmp", ".gif", ".tiff"} # Add or remove extensions as needed | |
def frame_number(filename): | |
# Try the pattern 'frame_x_7fps' | |
new_pattern_match = re.search(r'frame_(\d+)_7fps', filename) | |
if new_pattern_match: | |
return int(new_pattern_match.group(1)) | |
# If the new pattern is not found, use the original digit extraction method | |
matches = re.findall(r'\d+', filename) | |
if matches: | |
if matches[-1] == '0000' and len(matches) > 1: | |
return int(matches[-2]) # Return the second-to-last sequence if the last is '0000' | |
return int(matches[-1]) # Otherwise, return the last sequence | |
return float('inf') # Return 'inf' | |
# Sorting files based on frame number | |
# sorted_files = sorted(os.listdir(folder), key=frame_number) | |
sorted_files = sorted(os.listdir(folder)) | |
# Load, resize, and convert images | |
for filename in sorted_files: | |
ext = os.path.splitext(filename)[1].lower() | |
if ext in valid_extensions: | |
img_path = os.path.join(folder, filename) | |
img = cv2.imread(img_path, cv2.IMREAD_UNCHANGED) # Read image with original channels | |
if img is not None: | |
# Resize image | |
img = cv2.resize(img, target_size, interpolation=cv2.INTER_AREA) | |
# Convert to uint8 if necessary | |
if img.dtype == np.uint16: | |
img = (img / 256).astype(np.uint8) | |
# Ensure all images are in RGB format | |
if len(img.shape) == 2: # Grayscale image | |
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) | |
elif len(img.shape) == 3 and img.shape[2] == 3: # Color image in BGR format | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
# Convert the numpy array to a PIL image | |
pil_img = Image.fromarray(img) | |
images.append(pil_img) | |
return images | |
def extract_frames_from_video(video_path): | |
video_capture = cv2.VideoCapture(video_path) | |
frames = [] | |
if not video_capture.isOpened(): | |
return frames | |
while True: | |
ret, frame = video_capture.read() | |
if not ret: | |
break | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(frame_rgb) | |
frames.append(pil_image) | |
video_capture.release() | |
return frames | |
def export_gif_side_by_side(ref_frame,sketches, frames, output_gif_path, fps): | |
""" | |
Export a list of frames into a GIF with columns and an additional version with only frames. | |
Args: | |
- start_image (PIL.Image): The starting image. | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- end_image (PIL.Image): The ending image. | |
- reference_image (PIL.Image): The reference image. | |
- output_gif_path (str): Path to save the output GIF. | |
- fps (int): Frames per second for the GIF. | |
""" | |
# Convert numpy frames to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames] | |
# Get dimensions of images | |
width, height = pil_frames[0].size | |
resized_frames = [frame.resize((width, height)) for frame in pil_frames] | |
resized_sketches = [sketch.resize((width, height)) for sketch in sketches] | |
ref_frame=ref_frame.resize((width, height)) | |
# Create a new image for each frame with the three columns | |
column_frames = [] | |
for i, frame in enumerate(resized_frames): | |
# Create an empty image with the total width for all three columns | |
new_width = resized_sketches[0].width + frame.width+frame.width | |
combined_frame = Image.new('RGB', (new_width, height)) | |
# Paste the start image, reference image, and frame into the new image | |
combined_frame.paste(ref_frame, (0, 0)) | |
combined_frame.paste(resized_sketches[i], (resized_sketches[0].width, 0)) | |
combined_frame.paste(frame, (resized_sketches[0].width+resized_sketches[0].width, 0)) | |
column_frames.append(combined_frame) | |
# Calculate frame duration in milliseconds based on fps | |
frame_duration = 150 | |
# Save the GIF with columns | |
column_frames[0].save(output_gif_path, | |
format='GIF', | |
append_images=column_frames[1:], | |
save_all=True, | |
duration=frame_duration, | |
loop=0) | |
#shuffle operation | |
def safe_round(coords, size): | |
height, width = size[1], size[2] | |
rounded_coords = np.round(coords).astype(int) | |
rounded_coords[:, 0] = np.clip(rounded_coords[:, 0], 0, width - 1) | |
rounded_coords[:, 1] = np.clip(rounded_coords[:, 1], 0, height - 1) | |
return rounded_coords | |
def random_number(num_points,size,coords0,coords1): | |
shuffle_indices = np.random.permutation(np.arange(coords0.shape[0])) | |
shuffled_coords0 = coords0[shuffle_indices] | |
shuffled_coords1 = coords1[shuffle_indices] | |
indices = np.random.choice(np.arange(shuffled_coords0.shape[0]), size=num_points, replace=False) | |
# selected_coords0 = coords0[indices] | |
# selected_coords1 = coords1[indices] | |
selected_coords0 = shuffled_coords0[indices] | |
selected_coords1 = shuffled_coords1[indices] | |
h, w = size[1], size[2] | |
mask0 = np.zeros((h, w), dtype=np.uint8) | |
mask1 = np.zeros((h, w), dtype=np.uint8) | |
for i, (coord0, coord1) in enumerate(zip(selected_coords0, selected_coords1)): | |
x0, y0 = coord0 | |
x1, y1 = coord1 | |
# import ipdb;ipdb.set_trace() | |
mask0[y0, x0] = i + 1 | |
mask1[y1, x1] = i + 1 | |
return mask0,mask1 | |
def split_and_shuffle(image, coordinates): | |
assert image.shape[1] % 2 == 0 and image.shape[2] % 2 == 0, "Height and width must be even." | |
H, W = image.shape[1], image.shape[2] | |
patches_img = [ | |
image[:, :H//2, :W//2], | |
image[:, :H//2, W//2:], | |
image[:, H//2:, :W//2], | |
image[:, H//2:, W//2:] | |
] | |
patch_coords = [ | |
(0, H//2, 0, W//2), | |
(0, H//2, W//2, W), | |
(H//2, H, 0, W//2), | |
(H//2, H, W//2, W) | |
] | |
indices = list(range(4)) | |
random.shuffle(indices) | |
new_patch_coords = [ | |
(0, 0), | |
(0, W//2), | |
(H//2, 0), | |
(H//2, W//2) | |
] | |
new_coordinates = np.zeros_like(coordinates) | |
for i, (r, c) in enumerate(coordinates): | |
for idx, (r1, r2, c1, c2) in enumerate(patch_coords): | |
if r1 <= r < r2 and c1 <= c < c2: | |
new_r = r - r1 + new_patch_coords[indices.index(idx)][0] | |
new_c = c - c1 + new_patch_coords[indices.index(idx)][1] | |
new_coordinates[i] = [new_r, new_c] | |
break | |
shuffled_img = torch.cat([ | |
torch.cat([patches_img[indices[0]], patches_img[indices[1]]], dim=2), | |
torch.cat([patches_img[indices[2]], patches_img[indices[3]]], dim=2) | |
], dim=1) | |
return shuffled_img, new_coordinates | |
import os | |
import cv2 | |
def extract_frames_from_videos(video_folder): | |
for filename in os.listdir(video_folder): | |
if filename.endswith('.mp4'): | |
video_path = os.path.join(video_folder, filename) | |
frames_folder = os.path.join("processed_video", os.path.splitext(filename)[0]) | |
os.makedirs(frames_folder, exist_ok=True) | |
cap = cv2.VideoCapture(video_path) | |
frame_count = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_filename = os.path.join(frames_folder, f'frame_{frame_count:04d}.jpg') | |
cv2.imwrite(frame_filename, frame) | |
frame_count += 1 | |
cap.release() | |
print(f'Extracted {frame_count} frames from {filename} and saved to {frames_folder}') | |
def create_videos_from_frames(base_folder, output_folder, frame_rate=30): | |
for root, dirs, files in os.walk(base_folder): | |
frames = [] | |
for file in sorted(files): | |
if file.endswith(('.jpg', '.png')): | |
frame_path = os.path.join(root, file) | |
frames.append(frame_path) | |
if len(frames) == 14: | |
video_name = os.path.basename(root) + '.mp4' | |
video_path = os.path.join(output_folder, video_name) | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
first_frame = cv2.imread(frames[0]) | |
height, width, layers = first_frame.shape | |
video_writer = cv2.VideoWriter(video_path, fourcc, frame_rate, (width, height)) | |
for frame in frames: | |
img = cv2.imread(frame) | |
video_writer.write(img) | |
video_writer.release() | |
print(f'Created video: {video_path}') | |
def random_rotate(image, angle_range=(-60, 60)): | |
angle = random.uniform(*angle_range) | |
return image.rotate(angle, fillcolor=(255, 255, 255)) | |
def random_crop(image,ratio=0.9): | |
width, height = image.size | |
ratio = random.uniform(0.6, 1.0) | |
# print('ratio',ratio) | |
top = random.randint(0, height - int(height*ratio)) | |
left = random.randint(0, width - int(width*ratio)) | |
image=image.crop((left, top, left + int( width*ratio), top + int(height*ratio))) | |
image=image.resize((width,height)) | |
return image | |
def random_flip(image): | |
if random.random() < 0.5: | |
image = image.transpose(Image.FLIP_LEFT_RIGHT) | |
if random.random() < 0.5: | |
image = image.transpose(Image.FLIP_TOP_BOTTOM) | |
return image | |
def patch_shuffle(image, num_patches): | |
C, H, W = image.shape | |
assert H % num_patches == 0 and W % num_patches == 0, "Image dimensions must be divisible by num_patches" | |
patch_size_h = H // num_patches | |
patch_size_w = W // num_patches | |
patches = image.unfold(1, patch_size_h, patch_size_h).unfold(2, patch_size_w, patch_size_w) | |
patches = patches.contiguous().view(C, num_patches * num_patches, patch_size_h, patch_size_w) | |
shuffle_idx = torch.randperm(num_patches * num_patches) | |
shuffled_patches = patches[:, shuffle_idx, :, :] | |
shuffled_patches = shuffled_patches.view(C, num_patches, num_patches, patch_size_h, patch_size_w) | |
shuffled_image = shuffled_patches.permute(0, 1, 3, 2, 4).contiguous() | |
shuffled_image = shuffled_image.view(C, H, W) | |
return shuffled_image | |
def augment_image(image,k): | |
image = random_rotate(image) | |
image = random_crop(image) | |
image = random_flip(image) | |
# torch_image = torchvision.transforms.ToTensor()(image) | |
# patch_shuffled_image = patch_shuffle(torch_image, k) | |
# to_pil = transforms.ToPILImage() | |
# image = to_pil(patch_shuffled_image) | |
return image | |
def load_images_from_folder(folder): | |
image_list = [] | |
for filename in os.listdir(folder): | |
if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".jpeg"): | |
img_path = os.path.join(folder, filename) | |
try: | |
img = Image.open(img_path) | |
image_list.append(img) | |
except Exception as e: | |
print(f"Error loading image {filename}: {e}") | |
return image_list | |
def get_mask(model, input_img, s=640): | |
input_img = (input_img / 255).astype(np.float32) | |
h, w = h0, w0 = input_img.shape[:-1] | |
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) | |
ph, pw = s - h, s - w | |
img_input = np.zeros([s, s, 3], dtype=np.float32) | |
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(input_img, (w, h)) | |
img_input = np.transpose(img_input, (2, 0, 1)) | |
img_input = img_input[np.newaxis, :] | |
tmpImg = torch.from_numpy(img_input).type(torch.FloatTensor).to(model.device) | |
with torch.no_grad(): | |
pred = model(tmpImg) | |
pred = pred.cpu().numpy()[0] | |
pred = np.transpose(pred, (1, 2, 0)) | |
pred = pred[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] | |
pred = cv2.resize(pred, (w0, h0))[:, :, np.newaxis] | |
return pred | |
# code from | |
def safe_round(coords, size): | |
height, width = size[1], size[2] | |
rounded_coords = np.round(coords).astype(int) | |
rounded_coords[:, 0] = np.clip(rounded_coords[:, 0], 0, width - 1) | |
rounded_coords[:, 1] = np.clip(rounded_coords[:, 1], 0, height - 1) | |
return rounded_coords | |
def random_number(num_points,size,coords0,coords1): | |
shuffle_indices = np.random.permutation(np.arange(coords0.shape[0])) | |
shuffled_coords0 = coords0[shuffle_indices] | |
shuffled_coords1 = coords1[shuffle_indices] | |
indices = np.random.choice(np.arange(shuffled_coords0.shape[0]), size=num_points, replace=False) | |
# selected_coords0 = coords0[indices] | |
# selected_coords1 = coords1[indices] | |
selected_coords0 = shuffled_coords0[indices] | |
selected_coords1 = shuffled_coords1[indices] | |
h, w = size[1], size[2] | |
mask0 = np.zeros((h, w), dtype=np.uint8) | |
mask1 = np.zeros((h, w), dtype=np.uint8) | |
for i, (coord0, coord1) in enumerate(zip(selected_coords0, selected_coords1)): | |
x0, y0 = coord0 | |
x1, y1 = coord1 | |
# import ipdb;ipdb.set_trace() | |
mask0[y0, x0] = i + 1 | |
mask1[y1, x1] = i + 1 | |
return mask0,mask1 | |
import torch | |
def split_and_shuffle(image, keypoints, num_rows, num_cols): | |
""" | |
Split the image into tiles, shuffle them, and update the keypoints accordingly. | |
Parameters: | |
- image: Tensor of shape (3, H, W) | |
- keypoints: Tensor of shape (num_k, 2) | |
- num_rows: int, number of rows to split | |
- num_cols: int, number of columns to split | |
Returns: | |
- shuffled_image: Tensor of shape (3, H, W) | |
- new_keypoints: Tensor of shape (num_k, 2) | |
""" | |
C, H, W = image.shape | |
# Calculate padding to make H and W divisible by num_rows and num_cols | |
pad_h = (num_rows - H % num_rows) % num_rows | |
pad_w = (num_cols - W % num_cols) % num_cols | |
# Pad the image | |
H_padded = H + pad_h | |
W_padded = W + pad_w | |
padded_image = torch.zeros((C, H_padded, W_padded), dtype=image.dtype).to(image.device) | |
padded_image[:, :H, :W] = image | |
# Compute tile size | |
tile_height = H_padded // num_rows | |
tile_width = W_padded // num_cols | |
# Reshape and permute to get tiles | |
tiles = padded_image.reshape(C, | |
num_rows, | |
tile_height, | |
num_cols, | |
tile_width) | |
tiles = tiles.permute(1, 3, 0, 2, 4).contiguous() | |
num_tiles = num_rows * num_cols | |
tiles = tiles.view(num_tiles, C, tile_height, tile_width) | |
# Shuffle the tiles | |
idx_shuffle = torch.randperm(num_tiles).to(image.device) | |
tiles_shuffled = tiles[idx_shuffle] | |
# Reshape back to image | |
tiles_shuffled = tiles_shuffled.view(num_rows, num_cols, C, tile_height, tile_width) | |
shuffled_image = tiles_shuffled.permute(2, 0, 3, 1, 4).contiguous() | |
shuffled_image = shuffled_image.view(C, H_padded, W_padded) | |
shuffled_image = shuffled_image[:, :H, :W] # Crop back to original size | |
# Update keypoints | |
x = keypoints[:, 0] | |
y = keypoints[:, 1] | |
# Compute the tile indices where the keypoints are located | |
tile_rows = (y / tile_height).long() | |
tile_cols = (x / tile_width).long() | |
tile_indices = tile_rows * num_cols + tile_cols # Shape: (num_k,) | |
# Create inverse mapping from old tile indices to new tile positions | |
idx_unshuffle = torch.argsort(idx_shuffle) # idx_unshuffle[old_index] = new_index | |
# Get new tile indices for each keypoint | |
new_tile_indices = idx_unshuffle[tile_indices] | |
new_tile_rows = new_tile_indices // num_cols | |
new_tile_cols = new_tile_indices % num_cols | |
# Compute offsets within the tile | |
offset_x = x % tile_width | |
offset_y = y % tile_height | |
# Compute new keypoints coordinates | |
new_x = new_tile_cols * tile_width + offset_x | |
new_y = new_tile_rows * tile_height + offset_y | |
# Ensure keypoints are within image boundaries | |
new_x = new_x.clamp(0, W - 1) | |
new_y = new_y.clamp(0, H - 1) | |
new_keypoints = torch.stack([new_x, new_y], dim=1) | |
return shuffled_image, new_keypoints | |
def generate_point_map(size, coords0, coords1): | |
h, w = size[1], size[2] | |
mask0 = np.zeros((h, w), dtype=np.uint8) | |
mask1 = np.zeros((h, w), dtype=np.uint8) | |
for i, (coord0, coord1) in enumerate(zip(coords0, coords1)): | |
x0, y0 = coord0 | |
x1, y1 = coord1 | |
x0, y0 = int(round(x0)), int(round(y0)) | |
x1, y1 = int(round(x1)), int(round(y1)) | |
if 0 <= x0 < w and 0 <= y0 < h: | |
mask0[y0, x0] = i + 1 | |
if 0 <= x1 < w and 0 <= y1 < h: | |
mask1[y1, x1] = i + 1 | |
return mask0, mask1 | |
def select_multiple_points(points0, points1, num_points): | |
N = len(points0) | |
num_points = min(num_points, N) | |
indices = np.random.choice(N, size=num_points, replace=False) | |
selected_points0 = points0[indices] | |
selected_points1 = points1[indices] | |
return selected_points0, selected_points1 | |
def generate_point_map_frames(size, coords0, coords1,visibility): | |
h, w = size[1], size[2] | |
mask0 = np.zeros((h, w), dtype=np.uint8) | |
num_frames = coords1.shape[0] | |
mask1 = np.zeros((num_frames, h, w), dtype=np.uint8) | |
for i, coord0 in enumerate(coords0): | |
x0, y0 = coord0 | |
x0, y0 = int(round(x0)), int(round(y0)) | |
if 0 <= x0 < w and 0 <= y0 < h: | |
mask0[y0, x0] = i + 1 | |
for frame_idx in range(num_frames): | |
coords_frame = coords1[frame_idx] | |
for i, coord1 in enumerate(coords_frame): | |
x1, y1 = coord1 | |
x1, y1 = int(round(x1)), int(round(y1)) | |
if 0 <= x1 < w and 0 <= y1 < h and visibility[frame_idx,i]==True: | |
mask1[frame_idx, y1, x1] = i + 1 | |
return mask0, mask1 | |
import numpy as np | |
def extract_patches(image, coords, patch_size): | |
N = coords.shape[0] | |
channels, H, W = image.shape | |
patches = np.zeros((N, channels, patch_size, patch_size), dtype=image.dtype) | |
half_size = patch_size // 2 | |
for i in range(N): | |
x0, y0 = coords[i] | |
x0 = int(round(x0)) | |
y0 = int(round(y0)) | |
# Define the patch region in the image | |
x_start_img = x0 - half_size | |
x_end_img = x0 + half_size + 1 | |
y_start_img = y0 - half_size | |
y_end_img = y0 + half_size + 1 | |
# Define the region in the patch to fill | |
x_start_patch = 0 | |
y_start_patch = 0 | |
x_end_patch = patch_size | |
y_end_patch = patch_size | |
# Adjust for boundaries | |
if x_start_img < 0: | |
x_start_patch = -x_start_img | |
x_start_img = 0 | |
if y_start_img < 0: | |
y_start_patch = -y_start_img | |
y_start_img = 0 | |
if x_end_img > W: | |
x_end_patch -= (x_end_img - W) | |
x_end_img = W | |
if y_end_img > H: | |
y_end_patch -= (y_end_img - H) | |
y_end_img = H | |
# Calculate the actual sizes | |
patch_height = y_end_patch - y_start_patch | |
patch_width = x_end_patch - x_start_patch | |
img_height = y_end_img - y_start_img | |
img_width = x_end_img - x_start_img | |
# Ensure the sizes match | |
if patch_height != img_height or patch_width != img_width: | |
min_height = min(patch_height, img_height) | |
min_width = min(patch_width, img_width) | |
y_end_patch = y_start_patch + min_height | |
y_end_img = y_start_img + min_height | |
x_end_patch = x_start_patch + min_width | |
x_end_img = x_start_img + min_width | |
# Assign the image patch to the patches array | |
patches[i, :, y_start_patch:y_end_patch, x_start_patch:x_end_patch] = \ | |
image[:, y_start_img:y_end_img, x_start_img:x_end_img] | |
return patches | |
def generate_point_feature_map_frames_naive(image, size, coords0, coords1, visibility, patch_size): | |
channels, H, W = size | |
num_frames = coords1.shape[0] | |
N = coords0.shape[0] | |
# Extract patches from the reference image at coords0 | |
patches = extract_patches(image, coords0, patch_size) | |
half_size = patch_size // 2 | |
# Initialize the feature maps | |
feature_maps = np.zeros((num_frames, channels, H, W), dtype=image.dtype) | |
for frame_idx in range(num_frames): | |
feature_map = np.zeros((channels, H, W), dtype=image.dtype) | |
coords_frame = coords1[frame_idx] | |
for i in range(N): | |
if visibility[frame_idx, i]: | |
x1, y1 = coords_frame[i] | |
x1 = int(round(x1)) | |
y1 = int(round(y1)) | |
# Define the patch region in the feature map | |
x_start_map = x1 - half_size | |
x_end_map = x1 + half_size + 1 | |
y_start_map = y1 - half_size | |
y_end_map = y1 + half_size + 1 | |
# Define the region in the patch to use | |
x_start_patch = 0 | |
y_start_patch = 0 | |
x_end_patch = patch_size | |
y_end_patch = patch_size | |
# Adjust for boundaries | |
if x_start_map < 0: | |
x_start_patch = -x_start_map | |
x_start_map = 0 | |
if y_start_map < 0: | |
y_start_patch = -y_start_map | |
y_start_map = 0 | |
if x_end_map > W: | |
x_end_patch -= (x_end_map - W) | |
x_end_map = W | |
if y_end_map > H: | |
y_end_patch -= (y_end_map - H) | |
y_end_map = H | |
# Calculate the actual sizes | |
patch_height = y_end_patch - y_start_patch | |
patch_width = x_end_patch - x_start_patch | |
map_height = y_end_map - y_start_map | |
map_width = x_end_map - x_start_map | |
# Ensure the sizes match | |
if patch_height != map_height or patch_width != map_width: | |
min_height = min(patch_height, map_height) | |
min_width = min(patch_width, map_width) | |
y_end_patch = y_start_patch + min_height | |
y_end_map = y_start_map + min_height | |
x_end_patch = x_start_patch + min_width | |
x_end_map = x_start_map + min_width | |
# Place the patch into the feature map | |
feature_map[:, y_start_map:y_end_map, x_start_map:x_end_map] = \ | |
patches[i, :, y_start_patch:y_end_patch, x_start_patch:x_end_patch] | |
feature_maps[frame_idx] = feature_map | |
return feature_maps | |
import os | |
from PIL import Image | |
import numpy as np | |
from moviepy.editor import ImageSequenceClip | |
def export_gif_side_by_side_complete(ref_frame, sketches, frames, output_gif_path, supp_dir,fps): | |
""" | |
Export frames into a GIF and an MP4 video with columns, and save individual frames and sketches. | |
Args: | |
- ref_frame (PIL.Image or np.ndarray): The reference image. | |
- sketches (list): List of sketch images (as numpy arrays or PIL Image objects). | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- output_gif_path (str): Path to save the output GIF. | |
- fps (int): Frames per second for the GIF and MP4. | |
""" | |
# Ensure the output directory exists | |
output_dir = os.path.dirname(output_gif_path) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Get the base name of the output file (without extension) | |
base_name = os.path.splitext(os.path.basename(output_gif_path))[0] | |
# Create subdirectories for sketches and frames | |
sketch_dir = os.path.join(supp_dir,"sketches") | |
frame_dir = os.path.join(supp_dir,"frames") | |
os.makedirs(sketch_dir, exist_ok=True) | |
os.makedirs(frame_dir, exist_ok=True) | |
# Convert numpy arrays to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames] | |
pil_sketches = [Image.fromarray(sketch) if isinstance(sketch, np.ndarray) else sketch for sketch in sketches] | |
ref_frame = Image.fromarray(ref_frame) if isinstance(ref_frame, np.ndarray) else ref_frame | |
# Get dimensions of images | |
width, height = pil_frames[0].size | |
# Resize images | |
resized_frames = [frame.resize((width, height)) for frame in pil_frames] | |
resized_sketches = [sketch.resize((width, height)) for sketch in pil_sketches] | |
ref_frame = ref_frame.resize((width, height)) | |
# Save each sketch frame | |
for i, sketch in enumerate(resized_sketches): | |
sketch_filename = os.path.join(sketch_dir, f"{base_name}_sketch_{i:04d}.png") | |
sketch.save(sketch_filename) | |
# Save each frame | |
for i, frame in enumerate(resized_frames): | |
frame_filename = os.path.join(frame_dir, f"{base_name}_frame_{i:04d}.png") | |
frame.save(frame_filename) | |
# Save reference frame | |
ref_filename = os.path.join(supp_dir, f"{base_name}_reference.png") | |
ref_frame.save(ref_filename) | |
# Create a new image for each frame with the three columns | |
column_frames = [] | |
for i, frame in enumerate(resized_frames): | |
# Create an empty image with the total width for all three columns | |
new_width = ref_frame.width + resized_sketches[i].width + frame.width | |
combined_frame = Image.new('RGB', (new_width, height)) | |
# Paste the reference image, sketch, and frame into the new image | |
combined_frame.paste(ref_frame, (0, 0)) | |
combined_frame.paste(resized_sketches[i], (ref_frame.width, 0)) | |
combined_frame.paste(frame, (ref_frame.width + resized_sketches[i].width, 0)) | |
column_frames.append(combined_frame) | |
# Calculate frame duration in milliseconds based on fps | |
frame_duration = int(1000 / fps) | |
# Save the GIF with columns | |
column_frames[0].save(output_gif_path, | |
format='GIF', | |
append_images=column_frames[1:], | |
save_all=True, | |
duration=frame_duration, | |
loop=0) | |
# Save the MP4 video with the same content | |
output_mp4_path = os.path.join(supp_dir , 'result.mp4') | |
# Convert PIL Images to numpy arrays for moviepy | |
video_frames = [np.array(frame) for frame in column_frames] | |
clip = ImageSequenceClip(video_frames, fps=fps) | |
clip.write_videofile(output_mp4_path, codec='libx264') | |
def export_gif_with_ref_complete(start_image, frames, end_image, reference_image, output_gif_path, supp_dir, fps): | |
""" | |
Export a list of frames into a GIF with columns, save individual images and frames, | |
and create an MP4 video, following the storage method of 'export_gif_side_by_side_complete'. | |
Args: | |
- start_image (PIL.Image or np.ndarray): The starting image. | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- end_image (PIL.Image or np.ndarray): The ending image. | |
- reference_image (PIL.Image or np.ndarray): The reference image. | |
- output_gif_path (str): Path to save the output GIF. | |
- supp_dir (str): Directory to save supplementary files. | |
- fps (int): Frames per second for the GIF and MP4. | |
""" | |
# Ensure the output directory exists | |
output_dir = os.path.dirname(output_gif_path) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Get the base name of the output file (without extension) | |
base_name = os.path.splitext(os.path.basename(output_gif_path))[0] | |
# Create subdirectories for images and frames | |
start_end_dir = os.path.join(supp_dir, "start_end_images") | |
frame_dir = os.path.join(supp_dir, "frames") | |
reference_dir = os.path.join(supp_dir, "reference") | |
os.makedirs(start_end_dir, exist_ok=True) | |
os.makedirs(frame_dir, exist_ok=True) | |
os.makedirs(reference_dir, exist_ok=True) | |
# Convert numpy arrays to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames] | |
start_image = Image.fromarray(start_image) if isinstance(start_image, np.ndarray) else start_image | |
end_image = Image.fromarray(end_image) if isinstance(end_image, np.ndarray) else end_image | |
reference_image = Image.fromarray(reference_image) if isinstance(reference_image, np.ndarray) else reference_image | |
# Get dimensions of images | |
width, height = start_image.size | |
# Resize images to match the height | |
reference_image = reference_image.resize((reference_image.width, height)) | |
resized_frames = [frame.resize((frame.width, height)) for frame in pil_frames] | |
# Save start_image, end_image, and reference_image | |
start_image_filename = os.path.join(start_end_dir, f"{base_name}_start.png") | |
start_image.save(start_image_filename) | |
end_image_filename = os.path.join(start_end_dir, f"{base_name}_end.png") | |
end_image.save(end_image_filename) | |
reference_image_filename = os.path.join(reference_dir, f"{base_name}_reference.png") | |
reference_image.save(reference_image_filename) | |
# Save each frame | |
for i, frame in enumerate(resized_frames): | |
frame_filename = os.path.join(frame_dir, f"{base_name}_frame_{i:04d}.png") | |
frame.save(frame_filename) | |
# Create a new image for each frame with the columns | |
column_frames = [] | |
for i, frame in enumerate(resized_frames): | |
# Calculate the total width for all columns | |
new_width = start_image.width + reference_image.width + end_image.width + frame.width | |
combined_frame = Image.new('RGB', (new_width, height)) | |
# Paste the images into the combined frame | |
combined_frame.paste(start_image, (0, 0)) | |
combined_frame.paste(reference_image, (start_image.width, 0)) | |
combined_frame.paste(end_image, (start_image.width + reference_image.width, 0)) | |
combined_frame.paste(frame, (start_image.width + reference_image.width + end_image.width, 0)) | |
column_frames.append(combined_frame) | |
# Calculate frame duration in milliseconds based on fps | |
frame_duration = int(1000 / fps) | |
# Save the GIF with columns | |
column_frames[0].save(output_gif_path, | |
format='GIF', | |
append_images=column_frames[1:], | |
save_all=True, | |
duration=frame_duration, | |
loop=0) | |
# Save the MP4 video with the same content | |
output_mp4_path = os.path.join(supp_dir, 'result.mp4') | |
# Convert PIL Images to numpy arrays for moviepy | |
video_frames = [np.array(frame) for frame in column_frames] | |
clip = ImageSequenceClip(video_frames, fps=fps) | |
clip.write_videofile(output_mp4_path, codec='libx264') | |
def export_gif_side_by_side_complete_ablation(ref_frame, sketches, frames, output_gif_path, supp_dir,fps): | |
""" | |
Export frames into a GIF and an MP4 video with columns, and save individual frames and sketches. | |
Args: | |
- ref_frame (PIL.Image or np.ndarray): The reference image. | |
- sketches (list): List of sketch images (as numpy arrays or PIL Image objects). | |
- frames (list): List of frames (as numpy arrays or PIL Image objects). | |
- output_gif_path (str): Path to save the output GIF. | |
- fps (int): Frames per second for the GIF and MP4. | |
""" | |
# Ensure the output directory exists | |
output_dir = os.path.dirname(output_gif_path) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
# Get the base name of the output file (without extension) | |
base_name = os.path.splitext(os.path.basename(output_gif_path))[0] | |
# Create subdirectories for sketches and frames | |
sketch_dir = os.path.join(supp_dir,"sketches") | |
frame_dir = os.path.join(supp_dir,"frames") | |
os.makedirs(sketch_dir, exist_ok=True) | |
os.makedirs(frame_dir, exist_ok=True) | |
# Convert numpy arrays to PIL Images if needed | |
pil_frames = [Image.fromarray(frame) if isinstance(frame, np.ndarray) else frame for frame in frames] | |
pil_sketches = [Image.fromarray(sketch) if isinstance(sketch, np.ndarray) else sketch for sketch in sketches] | |
ref_frame = Image.fromarray(ref_frame) if isinstance(ref_frame, np.ndarray) else ref_frame | |
# Get dimensions of images | |
width, height = pil_frames[0].size | |
# Resize images | |
resized_frames = [frame.resize((width, height)) for frame in pil_frames] | |
resized_sketches = [sketch.resize((width, height)) for sketch in pil_sketches] | |
ref_frame = ref_frame.resize((width, height)) | |
# Save each sketch frame | |
for i, sketch in enumerate(resized_sketches): | |
sketch_filename = os.path.join(sketch_dir, f"{base_name}_sketch_{i:04d}.png") | |
sketch.save(sketch_filename) | |
# Save each frame | |
for i, frame in enumerate(resized_frames): | |
frame_filename = os.path.join(frame_dir, f"{base_name}_frame_{i:04d}.png") | |
frame.save(frame_filename) | |
# Save reference frame | |
ref_filename = os.path.join(supp_dir, f"{base_name}_reference.png") | |
ref_frame.save(ref_filename) | |
# Create a new image for each frame with the three columns | |
column_frames = [] | |
rgb_frames = [] | |
for i, frame in enumerate(resized_frames): | |
# Create an empty image with the total width for all three columns | |
new_width = ref_frame.width + resized_sketches[i].width + frame.width | |
combined_frame = Image.new('RGB', (new_width, height)) | |
# Paste the reference image, sketch, and frame into the new image | |
combined_frame.paste(ref_frame, (0, 0)) | |
combined_frame.paste(resized_sketches[i], (ref_frame.width, 0)) | |
combined_frame.paste(frame, (ref_frame.width + resized_sketches[i].width, 0)) | |
column_frames.append(combined_frame) | |
rgb_frames.append(frame) | |
# Calculate frame duration in milliseconds based on fps | |
frame_duration = int(1000 / fps) | |
# Save the GIF with columns | |
column_frames[0].save(output_gif_path, | |
format='GIF', | |
append_images=column_frames[1:], | |
save_all=True, | |
duration=frame_duration, | |
loop=0) | |
# Save the MP4 video with the same content | |
output_mp4_path = supp_dir+'.mp4' | |
# Convert PIL Images to numpy arrays for moviepy | |
video_frames = [np.array(frame) for frame in column_frames] | |
rgb_frames = [np.array(frame) for frame in rgb_frames] | |
clip = ImageSequenceClip(rgb_frames, fps=fps) | |
clip.write_videofile(output_mp4_path, codec='libx264') |