AniDoc / models_diffusers /adapter_model.py
fffiloni's picture
Migrated from GitHub
c705408 verified
import random
from typing import List
import torch
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
# from videoswap.utils.registry import MODEL_REGISTRY
class MLP(nn.Module):
def __init__(self, in_dim, out_dim, mid_dim=128):
super().__init__()
self.mlp = nn.Sequential(
nn.Linear(in_dim, mid_dim, bias=True),
nn.SiLU(inplace=False),
nn.Linear(mid_dim, out_dim, bias=True)
)
def forward(self, x):
return self.mlp(x)
def bilinear_interpolation(level_adapter_state, x, y, frame_idx, interpolated_value):
# level_adapter_state: (frames, channels, h, w)
# note the boundary
x1 = int(x)
y1 = int(y)
x2 = x1 + 1
y2 = y1 + 1
x_frac = x - x1
y_frac = y - y1
x1, x2 = max(min(x1, level_adapter_state.shape[3] - 1), 0), max(min(x2, level_adapter_state.shape[3] - 1), 0)
y1, y2 = max(min(y1, level_adapter_state.shape[2] - 1), 0), max(min(y2, level_adapter_state.shape[2] - 1), 0)
w11 = (1 - x_frac) * (1 - y_frac)
w21 = x_frac * (1 - y_frac)
w12 = (1 - x_frac) * y_frac
w22 = x_frac * y_frac
level_adapter_state[frame_idx, :, y1, x1] += interpolated_value * w11
level_adapter_state[frame_idx, :, y1, x2] += interpolated_value * w21
level_adapter_state[frame_idx, :, y2, x1] += interpolated_value * w12
level_adapter_state[frame_idx, :, y2, x2] += interpolated_value * w22
return level_adapter_state
# @MODEL_REGISTRY.register()
class SparsePointAdapter(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
embedding_channels=1280,
channels=[320, 640, 1280, 1280],
downsample_rate=[8, 16, 32, 64],
mid_dim=128,
):
super().__init__()
self.model_list = nn.ModuleList()
for ch in channels:
self.model_list.append(MLP(embedding_channels, ch, mid_dim))
self.downsample_rate = downsample_rate
self.channels = channels
self.radius = 2
def generate_loss_mask(self, point_index_list, point_tracker, num_frames, h, w, loss_type):
if loss_type == 'global':
# True
loss_mask = torch.ones((num_frames, 4, h // self.downsample_rate[0], w // self.downsample_rate[0]))
else:
# only compute loss for visible points, with a radius that is irrelevant of the downsampling scale
loss_mask = torch.zeros((num_frames, 4, h // self.downsample_rate[0], w // self.downsample_rate[0]))
for point_idx in point_index_list:
for frame_idx in range(num_frames):
px, py = point_tracker[frame_idx, point_idx]
if px < 0 or py < 0:
continue
else:
px, py = px / self.downsample_rate[0], py / self.downsample_rate[0]
x1 = int(px) - self.radius
y1 = int(py) - self.radius
x2 = int(px) + self.radius
y2 = int(py) + self.radius
x1, x2 = max(min(x1, loss_mask.shape[3] - 1), 0), max(min(x2, loss_mask.shape[3] - 1), 0)
y1, y2 = max(min(y1, loss_mask.shape[2] - 1), 0), max(min(y2, loss_mask.shape[2] - 1), 0)
loss_mask[:, :, y1:y2, x1:x2] = 1.0
return loss_mask
def forward(self, point_tracker, size, point_embedding, index_list=None, drop_rate=0.0, loss_type='global') -> List[torch.Tensor]:
# # (1, frames, num_points, 2) -> (frames, num_points, 2)
# point_tracker = point_tracker.squeeze(0)
# # (1, num_points, 1280) -> (num_points, 1280)
# point_embedding = point_embedding.squeeze(0)
w, h = size
num_frames, num_points = point_tracker.shape[:2]
if self.training:
point_index_list = [point_idx for point_idx in range(num_points) if random.random() > drop_rate]
loss_mask = self.generate_loss_mask(point_index_list, point_tracker, num_frames, h, w, loss_type)
else:
point_index_list = [point_idx for point_idx in range(num_points) if index_list is None or point_idx in index_list]
adapter_state = []
for level_idx, module in enumerate(self.model_list):
downsample_rate = self.downsample_rate[level_idx]
level_w, level_h = w // downsample_rate, h // downsample_rate
# e.g. (num_points, 1280) -> (num_points, 320)
point_feat = module(point_embedding)
level_adapter_state = torch.zeros((num_frames, self.channels[level_idx], level_h, level_w)).to(point_feat.device, dtype=point_feat.dtype)
for point_idx in point_index_list:
for frame_idx in range(num_frames):
px, py = point_tracker[frame_idx, point_idx]
if px < 0 or py < 0:
continue
else:
px, py = px / downsample_rate, py / downsample_rate
level_adapter_state = bilinear_interpolation(level_adapter_state, px, py, frame_idx, point_feat[point_idx])
adapter_state.append(level_adapter_state)
if self.training:
return adapter_state, loss_mask
else:
return adapter_state