import math import torch import torch.nn as nn from einops import rearrange from typing import List, Tuple # from cameractrl.models.motion_module import TemporalTransformerBlock from models_diffusers.camera.motion_module import TemporalTransformerBlock def get_parameter_dtype(parameter: torch.nn.Module): try: params = tuple(parameter.parameters()) if len(params) > 0: return params[0].dtype buffers = tuple(parameter.buffers()) if len(buffers) > 0: return buffers[0].dtype except StopIteration: # For torch.nn.DataParallel compatibility in PyTorch 1.5 def find_tensor_attributes(module: torch.nn.Module) -> List[Tuple[str, torch.Tensor]]: tuples = [(k, v) for k, v in module.__dict__.items() if torch.is_tensor(v)] return tuples gen = parameter._named_members(get_members_fn=find_tensor_attributes) first_tuple = next(gen) return first_tuple[1].dtype def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class PoseAdaptor(nn.Module): def __init__(self, unet, pose_encoder): super().__init__() self.unet = unet self.pose_encoder = pose_encoder def forward(self, inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids, pose_embedding): assert pose_embedding.ndim == 5 pose_embedding_features = self.pose_encoder(pose_embedding) # b c f h w noise_pred = self.unet( inp_noisy_latents, timesteps, encoder_hidden_states, added_time_ids=added_time_ids, pose_features=pose_embedding_features, ).sample return noise_pred class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResnetBlock(nn.Module): def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): super().__init__() ps = ksize // 2 if in_c != out_c or sk == False: self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: self.in_conv = None self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) self.act = nn.ReLU() self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) if sk == False: self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: self.skep = None self.down = down if self.down == True: self.down_opt = Downsample(in_c, use_conv=use_conv) def forward(self, x): if self.down == True: x = self.down_opt(x) if self.in_conv is not None: # edit x = self.in_conv(x) h = self.block1(x) h = self.act(h) h = self.block2(h) if self.skep is not None: return h + self.skep(x) else: return h + x class PositionalEncoding(nn.Module): def __init__( self, d_model, dropout=0., max_len=32, ): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(1, max_len, d_model) pe[0, :, 0::2, ...] = torch.sin(position * div_term) pe[0, :, 1::2, ...] = torch.cos(position * div_term) pe.unsqueeze_(-1).unsqueeze_(-1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:, :x.size(1), ...] return self.dropout(x) class CameraPoseEncoder(nn.Module): def __init__(self, downscale_factor, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, compression_factor=1, temporal_attention_nhead=8, attention_block_types=("Temporal_Self", ), temporal_position_encoding=False, temporal_position_encoding_max_len=16, rescale_output_factor=1.0): super(CameraPoseEncoder, self).__init__() self.unshuffle = nn.PixelUnshuffle(downscale_factor) self.channels = channels self.nums_rb = nums_rb self.encoder_down_conv_blocks = nn.ModuleList() self.encoder_down_attention_blocks = nn.ModuleList() for i in range(len(channels)): conv_layers = nn.ModuleList() temporal_attention_layers = nn.ModuleList() for j in range(nums_rb): if j == 0 and i != 0: in_dim = channels[i - 1] out_dim = int(channels[i] / compression_factor) conv_layer = ResnetBlock(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv) elif j == 0: in_dim = channels[0] out_dim = int(channels[i] / compression_factor) conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) elif j == nums_rb - 1: in_dim = channels[i] / compression_factor out_dim = channels[i] conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) else: in_dim = int(channels[i] / compression_factor) out_dim = int(channels[i] / compression_factor) conv_layer = ResnetBlock(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv) temporal_attention_layer = TemporalTransformerBlock(dim=out_dim, num_attention_heads=temporal_attention_nhead, attention_head_dim=int(out_dim / temporal_attention_nhead), attention_block_types=attention_block_types, dropout=0.0, cross_attention_dim=None, temporal_position_encoding=temporal_position_encoding, temporal_position_encoding_max_len=temporal_position_encoding_max_len, rescale_output_factor=rescale_output_factor) conv_layers.append(conv_layer) temporal_attention_layers.append(temporal_attention_layer) self.encoder_down_conv_blocks.append(conv_layers) self.encoder_down_attention_blocks.append(temporal_attention_layers) self.encoder_conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1) @property def dtype(self) -> torch.dtype: """ `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). """ return get_parameter_dtype(self) def forward(self, x): # unshuffle bs = x.shape[0] x = rearrange(x, "b f c h w -> (b f) c h w") x = self.unshuffle(x) # extract features features = [] x = self.encoder_conv_in(x) for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks): for res_layer, attention_layer in zip(res_block, attention_block): x = res_layer(x) h, w = x.shape[-2:] x = rearrange(x, '(b f) c h w -> (b h w) f c', b=bs) x = attention_layer(x) x = rearrange(x, '(b h w) f c -> (b f) c h w', h=h, w=w) features.append(rearrange(x, '(b f) c h w -> b c f h w', b=bs)) return features