|
|
|
|
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import os |
|
import json |
|
import pdb |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.modeling_utils import ModelMixin |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.models.embeddings import TimestepEmbedding, Timesteps |
|
from .unet_blocks import ( |
|
CrossAttnDownBlock3D, |
|
CrossAttnUpBlock3D, |
|
DownBlock3D, |
|
UNetMidBlock3DCrossAttn, |
|
UpBlock3D, |
|
get_down_block, |
|
get_up_block, |
|
) |
|
from .resnet import InflatedConv3d |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
class UNet3DConditionOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
class UNet3DConditionModel(ModelMixin, ConfigMixin): |
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
sample_size: Optional[int] = None, |
|
in_channels: int = 4, |
|
out_channels: int = 4, |
|
center_input_sample: bool = False, |
|
flip_sin_to_cos: bool = True, |
|
freq_shift: int = 0, |
|
down_block_types: Tuple[str] = ( |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D", |
|
), |
|
mid_block_type: str = "UNetMidBlock3DCrossAttn", |
|
up_block_types: Tuple[str] = ( |
|
"UpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D" |
|
), |
|
only_cross_attention: Union[bool, Tuple[bool]] = False, |
|
block_out_channels: Tuple[int] = (320, 640, 1280, 1280), |
|
layers_per_block: int = 2, |
|
downsample_padding: int = 1, |
|
mid_block_scale_factor: float = 1, |
|
act_fn: str = "silu", |
|
norm_num_groups: int = 32, |
|
norm_eps: float = 1e-5, |
|
cross_attention_dim: int = 1280, |
|
attention_head_dim: Union[int, Tuple[int]] = 8, |
|
dual_cross_attention: bool = False, |
|
use_linear_projection: bool = False, |
|
class_embed_type: Optional[str] = None, |
|
num_class_embeds: Optional[int] = None, |
|
upcast_attention: bool = False, |
|
resnet_time_scale_shift: str = "default", |
|
|
|
|
|
use_motion_module = False, |
|
motion_module_resolutions = ( 1,2,4,8 ), |
|
motion_module_mid_block = False, |
|
motion_module_decoder_only = False, |
|
motion_module_type = None, |
|
motion_module_kwargs = {}, |
|
unet_use_cross_frame_attention = None, |
|
unet_use_temporal_attention = None, |
|
): |
|
super().__init__() |
|
|
|
self.sample_size = sample_size |
|
time_embed_dim = block_out_channels[0] * 4 |
|
|
|
|
|
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)) |
|
|
|
|
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) |
|
timestep_input_dim = block_out_channels[0] |
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
|
|
|
|
if class_embed_type is None and num_class_embeds is not None: |
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) |
|
elif class_embed_type == "timestep": |
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) |
|
elif class_embed_type == "identity": |
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) |
|
else: |
|
self.class_embedding = None |
|
|
|
self.down_blocks = nn.ModuleList([]) |
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
if isinstance(only_cross_attention, bool): |
|
only_cross_attention = [only_cross_attention] * len(down_block_types) |
|
|
|
if isinstance(attention_head_dim, int): |
|
attention_head_dim = (attention_head_dim,) * len(down_block_types) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
res = 2 ** i |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
down_block = get_down_block( |
|
down_block_type, |
|
num_layers=layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
temb_channels=time_embed_dim, |
|
add_downsample=not is_final_block, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attention_head_dim[i], |
|
downsample_padding=downsample_padding, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
|
|
use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only), |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
if mid_block_type == "UNetMidBlock3DCrossAttn": |
|
self.mid_block = UNetMidBlock3DCrossAttn( |
|
in_channels=block_out_channels[-1], |
|
temb_channels=time_embed_dim, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=mid_block_scale_factor, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=attention_head_dim[-1], |
|
resnet_groups=norm_num_groups, |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
upcast_attention=upcast_attention, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
|
|
use_motion_module=use_motion_module and motion_module_mid_block, |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
else: |
|
raise ValueError(f"unknown mid_block_type : {mid_block_type}") |
|
|
|
|
|
self.num_upsamplers = 0 |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
reversed_attention_head_dim = list(reversed(attention_head_dim)) |
|
only_cross_attention = list(reversed(only_cross_attention)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
res = 2 ** (3 - i) |
|
is_final_block = i == len(block_out_channels) - 1 |
|
|
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] |
|
|
|
|
|
if not is_final_block: |
|
add_upsample = True |
|
self.num_upsamplers += 1 |
|
else: |
|
add_upsample = False |
|
|
|
up_block = get_up_block( |
|
up_block_type, |
|
num_layers=layers_per_block + 1, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=prev_output_channel, |
|
temb_channels=time_embed_dim, |
|
add_upsample=add_upsample, |
|
resnet_eps=norm_eps, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attn_num_head_channels=reversed_attention_head_dim[i], |
|
dual_cross_attention=dual_cross_attention, |
|
use_linear_projection=use_linear_projection, |
|
only_cross_attention=only_cross_attention[i], |
|
upcast_attention=upcast_attention, |
|
resnet_time_scale_shift=resnet_time_scale_shift, |
|
|
|
unet_use_cross_frame_attention=unet_use_cross_frame_attention, |
|
unet_use_temporal_attention=unet_use_temporal_attention, |
|
|
|
use_motion_module=use_motion_module and (res in motion_module_resolutions), |
|
motion_module_type=motion_module_type, |
|
motion_module_kwargs=motion_module_kwargs, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) |
|
|
|
def set_attention_slice(self, slice_size): |
|
r""" |
|
Enable sliced attention computation. |
|
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
|
|
Args: |
|
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
sliceable_head_dims = [] |
|
|
|
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): |
|
if hasattr(module, "set_attention_slice"): |
|
sliceable_head_dims.append(module.sliceable_head_dim) |
|
|
|
for child in module.children(): |
|
fn_recursive_retrieve_slicable_dims(child) |
|
|
|
|
|
for module in self.children(): |
|
fn_recursive_retrieve_slicable_dims(module) |
|
|
|
num_slicable_layers = len(sliceable_head_dims) |
|
|
|
if slice_size == "auto": |
|
|
|
|
|
slice_size = [dim // 2 for dim in sliceable_head_dims] |
|
elif slice_size == "max": |
|
|
|
slice_size = num_slicable_layers * [1] |
|
|
|
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size |
|
|
|
if len(slice_size) != len(sliceable_head_dims): |
|
raise ValueError( |
|
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" |
|
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." |
|
) |
|
|
|
for i in range(len(slice_size)): |
|
size = slice_size[i] |
|
dim = sliceable_head_dims[i] |
|
if size is not None and size > dim: |
|
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") |
|
|
|
|
|
|
|
|
|
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): |
|
if hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size.pop()) |
|
|
|
for child in module.children(): |
|
fn_recursive_set_attention_slice(child, slice_size) |
|
|
|
reversed_slice_size = list(reversed(slice_size)) |
|
for module in self.children(): |
|
fn_recursive_set_attention_slice(module, reversed_slice_size) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): |
|
module.gradient_checkpointing = value |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
timestep: Union[torch.Tensor, float, int], |
|
encoder_hidden_states: torch.Tensor, |
|
class_labels: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
return_dict: bool = True, |
|
) -> Union[UNet3DConditionOutput, Tuple]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor |
|
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps |
|
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: |
|
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When |
|
returning a tuple, the first element is the sample tensor. |
|
""" |
|
|
|
|
|
|
|
|
|
default_overall_up_factor = 2**self.num_upsamplers |
|
|
|
|
|
forward_upsample_size = False |
|
upsample_size = None |
|
|
|
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): |
|
logger.info("Forward upsample size to force interpolation output size.") |
|
forward_upsample_size = True |
|
|
|
|
|
if attention_mask is not None: |
|
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 |
|
attention_mask = attention_mask.unsqueeze(1) |
|
|
|
|
|
if self.config.center_input_sample: |
|
sample = 2 * sample - 1.0 |
|
|
|
|
|
timesteps = timestep |
|
if not torch.is_tensor(timesteps): |
|
|
|
is_mps = sample.device.type == "mps" |
|
if isinstance(timestep, float): |
|
dtype = torch.float32 if is_mps else torch.float64 |
|
else: |
|
dtype = torch.int32 if is_mps else torch.int64 |
|
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) |
|
elif len(timesteps.shape) == 0: |
|
timesteps = timesteps[None].to(sample.device) |
|
|
|
|
|
timesteps = timesteps.expand(sample.shape[0]) |
|
|
|
t_emb = self.time_proj(timesteps) |
|
|
|
|
|
|
|
|
|
t_emb = t_emb.to(dtype=self.dtype) |
|
emb = self.time_embedding(t_emb) |
|
|
|
if self.class_embedding is not None: |
|
if class_labels is None: |
|
raise ValueError("class_labels should be provided when num_class_embeds > 0") |
|
|
|
if self.config.class_embed_type == "timestep": |
|
class_labels = self.time_proj(class_labels) |
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) |
|
emb = emb + class_emb |
|
|
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
down_block_res_samples = (sample,) |
|
for downsample_block in self.down_blocks: |
|
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: |
|
sample, res_samples = downsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
encoder_hidden_states=encoder_hidden_states, |
|
attention_mask=attention_mask, |
|
) |
|
else: |
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states) |
|
|
|
down_block_res_samples += res_samples |
|
|
|
|
|
sample = self.mid_block( |
|
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask |
|
) |
|
|
|
|
|
for i, upsample_block in enumerate(self.up_blocks): |
|
is_final_block = i == len(self.up_blocks) - 1 |
|
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] |
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] |
|
|
|
|
|
|
|
if not is_final_block and forward_upsample_size: |
|
upsample_size = down_block_res_samples[-1].shape[2:] |
|
|
|
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: |
|
sample = upsample_block( |
|
hidden_states=sample, |
|
temb=emb, |
|
res_hidden_states_tuple=res_samples, |
|
encoder_hidden_states=encoder_hidden_states, |
|
upsample_size=upsample_size, |
|
attention_mask=attention_mask, |
|
) |
|
else: |
|
sample = upsample_block( |
|
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states, |
|
) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
if not return_dict: |
|
return (sample,) |
|
|
|
return UNet3DConditionOutput(sample=sample) |
|
|
|
@classmethod |
|
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None): |
|
if subfolder is not None: |
|
pretrained_model_path = os.path.join(pretrained_model_path, subfolder) |
|
print(f"loaded temporal unet's pretrained weights from {pretrained_model_path} ...") |
|
|
|
config_file = os.path.join(pretrained_model_path, 'config.json') |
|
if not os.path.isfile(config_file): |
|
raise RuntimeError(f"{config_file} does not exist") |
|
with open(config_file, "r") as f: |
|
config = json.load(f) |
|
config["_class_name"] = cls.__name__ |
|
config["down_block_types"] = [ |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"CrossAttnDownBlock3D", |
|
"DownBlock3D" |
|
] |
|
config["up_block_types"] = [ |
|
"UpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D", |
|
"CrossAttnUpBlock3D" |
|
] |
|
|
|
from diffusers.utils import WEIGHTS_NAME |
|
model = cls.from_config(config, **unet_additional_kwargs) |
|
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME) |
|
if not os.path.isfile(model_file): |
|
raise RuntimeError(f"{model_file} does not exist") |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
|
|
m, u = model.load_state_dict(state_dict, strict=False) |
|
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};") |
|
|
|
|
|
params = [p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()] |
|
print(f"### Temporal Module Parameters: {sum(params) / 1e6} M") |
|
|
|
return model |
|
|